Electron Correlation and Separated‐Pair Approximation. An Application to Berylliumlike Atomic Systems

A method is developed for determining, with the help of the variation principle, the best antisymmetrized product of separated geminals for a polyatomic system. The strongly orthogonal geminals are determined directly in natural form and the natural orbitals are expressed in terms of Slater‐type atomic orbitals. An application to the berylliumlike atomic systems uniformly recovers 90% of the correlation energy. Correction for defects in the K shell of the calculated wavefunctions gives an estimate of 91% for the correlation energy recovered by the best possible separated‐pair approximation, corresponding to an absolute error of about 5 kcal in beryllium. The correlation energy recovered is analyzed by partitioning the energy expression into intra‐ and intergeminal contributions, and both are further resolved into natural orbital contributions. The analysis makes it possible to assess the roles played by the various natural orbitals in lowering the energy and shows certain types of intergeminal as well as intrageminal interactions to be negligible. It also permits the comparison with calculations by other methods. The introduction of additional terms containing interelectronic distances is found to be less efficient than the further addition of natural orbitals.

[1]  M. Krauss,et al.  Pair Correlations in Closed‐Shell Systems , 1964 .

[2]  R. Mcweeny,et al.  A quantum-mechanical study of the water molecule , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  J. Bearden,et al.  Atomic energy levels , 1965 .

[4]  R. Mcweeny,et al.  The density matrix in may-electron quantum mechanics III. Generalized product functions for beryllium and four-electron ions , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[5]  H. Shull,et al.  Nature of the Two‐Electron Chemical Bond. IV. Natural Orbitals for He2++ , 1964 .

[6]  E. Davidson,et al.  Natural Expansion of Exact Wavefunctions. II. The Hydrogen‐Molecule Ground State , 1962 .

[7]  H. Shull,et al.  ELECTRONIC CORRELATION ENERGY IN 3- AND 4- ELECTRON ATOMS. Technical Note No. 32 , 1959 .

[8]  Tadashi Arai,et al.  Theorem on Separability of Electron Pairs , 1960 .

[9]  R. Bonham On certain atomic integrals involving products of rij , 1965 .

[10]  R. E. Watson APPROXIMATE WAVE FUNCTIONS FOR ATOMIC Be , 1960 .

[11]  C. Edmiston Relation of Sinanoğlu's Theory of ``Exact Pairs'' to the First Iteration, beyond SCF, in Separated-Pair Theory , 1963 .

[12]  R. Mcweeny,et al.  The density matrix in many-electron quantum mechanics II. Separation of space and spin variables; spin coupling problems , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[13]  John Edward Lennard-Jones,et al.  The molecular orbital theory of chemical valency XVI. A theory of paired-electrons in polyatomic molecules , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[14]  P. Löwdin,et al.  Superposition of Configurations and Natural Spin Orbitals. Applications to the He Problem , 1959 .

[15]  Linus Pauling,et al.  A resonating-valence-bond theory of metals and intermetallic compounds , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[16]  O. Sǐnanoğlu,et al.  Many‐Electron Theory of Atoms and Molecules. IV. Be Atom and Its Ions , 1964 .

[17]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[18]  Werner Kutzelnigg,et al.  Direct Determination of Natural Orbitals and Natural Expansion Coefficients of Many‐Electron Wavefunctions. I. Natural Orbitals in the Geminal Product Approximation , 1964 .

[19]  R. Parr,et al.  Range of Electron Correlation in the Helium Atom , 1965 .

[20]  C. C. J. Roothaan,et al.  Self-Consistent Field Theory for Open Shells of Electronic Systems , 1960 .

[21]  Robert G. Parr,et al.  Theory of Separated Electron Pairs , 1958 .

[22]  Klaus Ruedenberg,et al.  Localized Atomic and Molecular Orbitals , 1963 .

[23]  H. Spang A Review of Minimization Techniques for Nonlinear Functions , 1962 .

[24]  R. Mcweeny,et al.  Self‐Consistent Group Calculations on Polyatomic Molecules. I. Basic Theory with an Application to Methane , 1965 .

[25]  R. Mcweeny,et al.  The density matrix in many-electron quantum mechanics I. Generalized product functions. Factorization and physical interpretation of the density matrices , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[26]  H. Levine,et al.  Many‐Electron‐Theory ab Initio Calculation for the Be Atom , 1965 .

[27]  R. C. Henderson,et al.  STUDY OF SEPARATED ELECTRON PAIRS IN THE LiH MOLECULE , 1965 .

[28]  L. Szász Atomic Many-Body Problem. II. The Matrix Components of the Hamiltonian with Respect to Correlated Wave Functions , 1962 .

[29]  Y. Öhrn,et al.  On the Calculation of Some Atomic Integrals Containing Functions of r12, r13, and r23 , 1963 .

[30]  C. Pekeris,et al.  Ground State of Two-Electron Atoms , 1958 .

[31]  E. Kapuy Calculation of the energy expression in case of a wave function built up from two electron orbits , 1958 .

[32]  C. E. Reid,et al.  On the Calculations of Real Wave Functions In Natural Form for Two-Electron Systems , 1963 .

[33]  L. Szász Pair correlations in the Be atom , 1963 .

[34]  E. Hylleraas,et al.  Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium , 1929 .

[35]  W. Kutzelnigg On the validity of the electron pair approximation for the Beryllium ground state , 1965 .

[36]  W. Kutzelnigg Die Lösung des quantenmechanischen Zwei-Elektronenproblems durch unmittelbare Bestimmung der natürlichen Einelektronenfunktionen , 1963 .

[37]  E. Kapuy Derivation of “almost” orthogonal two-electron orbitals , 1961 .

[38]  E. Clementi,et al.  Relativistic Correction for Analytic Hartree-Fock Wave Functions , 1964 .

[39]  Klaus Ruedenberg,et al.  Localized Atomic and Molecular Orbitals. II , 1965 .

[40]  Per-Olov Löwdin,et al.  Note on the Separability Theorem for Electron Pairs , 1961 .

[41]  R. E. Watson The two-configuration approximation for four-electron ions , 1961 .

[42]  L. Szász On the Evaluation of Integrals Occurring in the Theory of the Correlated Electronic Wave Functions , 1961 .

[43]  A. Weiss,et al.  ANALYTICAL SELF-CONSISTENT FIELD FUNCTIONS FOR THE ATOMIC CONFIGURATIONS 1s$sup 2$, 1s$sup 2$2s, AND 1s$sup 2$2s$sup 2$ , 1960 .

[44]  P. Löwdin Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction , 1955 .

[45]  H. P. Kelly Many-Body Perturbation Theory Applied to Atoms , 1964 .

[46]  R. E. Kalman,et al.  Optimum Seeking Methods. , 1964 .

[47]  H. Shull,et al.  ELECTRON PAIRS IN THE BERYLLIUM ATOM1 , 1962 .

[48]  H. Shull,et al.  Single‐Center Wave Function for the Hydrogen Molecule , 1959 .