MRI to X-ray fluoroscopy overlay for guidance of cardiac resynchronization therapy procedures

Cardiac resynchronization therapy (CRT) can be an effective procedure for patients with heart failure but 30% of patients do not respond. This may be partially caused by the sub-optimal placement of the left ventricular lead. We demonstrate how pre-procedural cardiac MR images can be used to assist CRT by integration of anatomical and functional information with live X-ray images. We evaluated our approach in 7 patients. Each patient underwent pre-CRT MRI scan using MultiHance contrast. This included whole heart imaging sequence; 3D tagged and cine imaging for function; and late enhancement imaging for scar. The MRI data were processed to yield a detailed anatomical model. Whole heart segmentation was achieved automatically using the Philips EP Planner and the coronary venous anatomy was manually segmented by a clinical expert. Functional information was derived using the Tomtec 4D LV-Analysis. The left ventricle was segmented into the standard 16 segment AHA model and the functional information could be added to this. If scar was present, this was segmented by an expert and added to the model. The implant was carried out using a Philips Allura X-ray system and the detailed cardiac model was registered to the X-ray fluoroscopy using multiple views of a catheter looped in the right atrium. There was complete freedom of movement of the X-ray system and respiratory motion compensation was achieved by tracking the diaphragm. The software framework was a specially modified version of the Philips EP Navigator. We validated the registration using balloon occlusion coronary veno-grams. The mean 2D target registration error for 7 patients was 1.3±0.68 mm. Furthermore, left lead deployment was successful in all patients.

[1]  Debiao Li,et al.  Whole‐heart coronary magnetic resonance angiography at 3 Tesla in 5 minutes with slow infusion of Gd‐BOPTA, a high‐relaxivity clinical contrast agent , 2007, Magnetic resonance in medicine.

[2]  Volker Rasche,et al.  Respiratory motion compensated overlay of surface models from cardiac MR on interventional x-ray fluoroscopy for guidance of cardiac resynchronization therapy procedures , 2010, Medical Imaging.

[3]  Josef Kautzner,et al.  Technical Aspects of Implantation of LV Lead for Cardiac Resynchronization Therapy in Chronic Heart Failure , 2004, Pacing and clinical electrophysiology : PACE.

[4]  Kawal S. Rhode,et al.  3-D Visualization of Acute RF Ablation Lesions Using MRI for the Simultaneous Determination of the Patterns of Necrosis and Edema , 2010, IEEE Transactions on Biomedical Engineering.

[5]  S. Knecht,et al.  Computed tomography-fluoroscopy overlay evaluation during catheter ablation of left atrial arrhythmia. , 2008, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[6]  Olivier Ecabert,et al.  Automatic Whole Heart Segmentation in Static Magnetic Resonance Image Volumes , 2007, MICCAI.

[7]  Kawal S. Rhode,et al.  Registration and tracking to integrate X-ray and MR images in an XMR Facility , 2003, IEEE Transactions on Medical Imaging.

[8]  Guido Gerig,et al.  User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability , 2006, NeuroImage.

[9]  S. Riederer,et al.  Respiratory Motion of the Heart: Kinematics and the Implications for the Spatial Resolution in Coronary Imaging , 1995, Magnetic resonance in medicine.