A knowledge-based cooperative differential evolution for neural fuzzy inference systems

This study presents a knowledge-based cooperative differential evolution (KCoDE) for neural fuzzy inference systems to solve nonlinear control system problems. KCoDE decomposes the fuzzy system into subpopulations, and each individual within each subpopulation evolves separately. The KCoDE method uses five mutation strategies of differential evolution as the knowledge sources to generate a new population space to influence the population space. The exemplary individuals are selected from the population space to the belief space. The belief space in KCoDE is the information repository in which individuals can store their experiences to guide others. Finally, the experimental results show that the proposed KCoDE method better approximates the global optimal solution and has a faster convergence rate than the other methods.

[1]  Xin Yao,et al.  Large scale evolutionary optimization using cooperative coevolution , 2008, Inf. Sci..

[2]  Chia-Feng Juang,et al.  Zero-order TSK-type fuzzy system learning using a two-phase swarm intelligence algorithm , 2008, Fuzzy Sets Syst..

[3]  Cecilia Heyes,et al.  Evolution of Cognition , 2001 .

[4]  Kenneth A. De Jong,et al.  Cooperative Coevolution: An Architecture for Evolving Coadapted Subcomponents , 2000, Evolutionary Computation.

[5]  P. Kokotovic,et al.  Nonlinear control via approximate input-output linearization: the ball and beam example , 1992 .

[6]  Antonio J. Rivera,et al.  CO2RBFN: an evolutionary cooperative–competitive RBFN design algorithm for classification problems , 2010, Soft Comput..

[7]  Robert G. Reynolds,et al.  The role of culture in the emergence of decision-making roles: An example using cultural algorithms , 2008 .

[8]  Rainer Storn,et al.  System design by constraint adaptation and differential evolution , 1999, IEEE Trans. Evol. Comput..

[9]  Y. Rahmat-Samii,et al.  Particle swarm optimization in electromagnetics , 2004, IEEE Transactions on Antennas and Propagation.

[10]  Chia-Feng Juang,et al.  Evolutionary Robot Wall-Following Control Using Type-2 Fuzzy Controller With Species-DE-Activated Continuous ACO , 2013, IEEE Transactions on Fuzzy Systems.

[11]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[12]  Xin Yao,et al.  Stochastic ranking for constrained evolutionary optimization , 2000, IEEE Trans. Evol. Comput..

[13]  Jouni Lampinen,et al.  A Trigonometric Mutation Operation to Differential Evolution , 2003, J. Glob. Optim..

[14]  L. Coelho,et al.  Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect , 2006, IEEE Transactions on Power Systems.

[15]  Sigeru Omatu,et al.  Process control by on-line trained neural controllers , 1992, IEEE Trans. Ind. Electron..

[16]  Ganapati Panda,et al.  Identification of nonlinear dynamic systems using functional link artificial neural networks , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[17]  M.M.A. Salama,et al.  Opposition-Based Differential Evolution , 2008, IEEE Transactions on Evolutionary Computation.

[18]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[19]  Chia-Feng Juang,et al.  Hierarchical Cluster-Based Multispecies Particle-Swarm Optimization for Fuzzy-System Optimization , 2010, IEEE Transactions on Fuzzy Systems.

[20]  Robert G. Reynolds,et al.  Cultural algorithms in dynamic environments , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[21]  César Hervás-Martínez,et al.  Cooperative coevolution of artificial neural network ensembles for pattern classification , 2005, IEEE Transactions on Evolutionary Computation.

[22]  Yih-Guang Leu,et al.  An online GA-based output-feedback direct adaptive fuzzy-neural controller for uncertain nonlinear systems , 2004, IEEE Trans. Syst. Man Cybern. Part B.

[23]  Moshe Sipper,et al.  Fuzzy CoCo: a cooperative-coevolutionary approach to fuzzy modeling , 2001, IEEE Trans. Fuzzy Syst..

[24]  Germano Lambert-Torres,et al.  A genetic-based neuro-fuzzy approach for modeling and control of dynamical systems , 1998, IEEE Trans. Neural Networks.

[25]  Clive D. L. Wynne,et al.  Animal Cognition: The Mental Lives of Animals , 2002 .

[26]  Adam Lipowski,et al.  Roulette-wheel selection via stochastic acceptance , 2011, ArXiv.

[27]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[28]  Andries Petrus Engelbrecht,et al.  A Cooperative approach to particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[29]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[30]  Adel Al-Jumaily,et al.  Feature subset selection using differential evolution and a statistical repair mechanism , 2011, Expert Syst. Appl..

[31]  Xin Yao,et al.  A new evolutionary system for evolving artificial neural networks , 1997, IEEE Trans. Neural Networks.

[32]  Kay Chen Tan,et al.  A distributed Cooperative coevolutionary algorithm for multiobjective optimization , 2006, IEEE Transactions on Evolutionary Computation.

[33]  Chin-Teng Lin,et al.  Nonlinear System Control Using Adaptive Neural Fuzzy Networks Based on a Modified Differential Evolution , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[34]  Zbigniew Michalewicz,et al.  Parameter control in evolutionary algorithms , 1999, IEEE Trans. Evol. Comput..

[35]  Kenneth A. De Jong,et al.  A Cooperative Coevolutionary Approach to Function Optimization , 1994, PPSN.

[36]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[37]  Wieslaw Kubiak,et al.  Cyclic Just-In-Time Sequences Are Optimal , 2003, J. Glob. Optim..

[38]  Chin-Teng Lin,et al.  A Functional-Link-Based Neurofuzzy Network for Nonlinear System Control , 2008, IEEE Transactions on Fuzzy Systems.

[39]  Chia-Feng Juang,et al.  Designing Fuzzy-Rule-Based Systems Using Continuous Ant-Colony Optimization , 2010, IEEE Transactions on Fuzzy Systems.