The nitrogen isotopic ratio of HC3N towards the L1544 prestellar core

The origin of the heavily fractionated reservoir of nitrogen in comets remains an issue in the theory of their formation and hence of the solar system. Whether the fractionated reservoir traced by comets is inherited from the interstellar cloud or is the product of processes taking place in the protostar, or in the protoplanetary disk, remains unclear. So far, observations of nitrogen isotopic ratios in protostars or prestellar cores have not securely identified such a fractionated reservoir owing to the intrinsic difficulty of direct isotopic ratios measurements. In this article, we report the detection of 5 rotational lines of \ce{HC3N}, {including the weaker components of the hyperfine multiplets}, and two rotational lines of its $^{15}$N isotopologue, towards the L1544 prestellar core. Based on a MCMC/non-LTE multi-line analysis at the hyperfine level, we derive the column densities of \ce{HC3N} ($8.0\pm0.4\tdix{13}$\cc) and \ce{HC3^{15}N} ($2.0\pm0.4\tdix{11}$\cc) and derive an isotopic ratio of 400$\pm$20(1$\sigma$). This value suggests that \ce{HC3N} is slightly depleted in $^{15}$N in L1544 with respect to the elemental $^{14}$N/$^{15}$N ratio {of $\approx$330} in the present-day local interstellar medium. Our study also stresses the need for radiative calculations at the hyperfine level. Finally, the comparison of the derived ratio with those obtained in CN and HCN in the same core seems to favor CN+C$_2$H$_2$ as the dominant formation route to HC$_3$N. However, uncertainties in the isotopic ratios preclude definitive conclusions.

[1]  C. Ceccarelli,et al.  First Measurement of the 14N/15N Ratio in the Analog of the Sun Progenitor OMC-2 FIR4 , 2017, 1712.01564.

[2]  C. Vastel,et al.  High spectral resolution observations of HNC3 and HCCNC in the L1544 pre-stellar core , 2017, 1711.10255.

[3]  S. Charnley,et al.  Revised Models of Interstellar Nitrogen Isotopic Fractionation , 2017, 1711.08254.

[4]  S. Kalenskii,et al.  Detection of HC5N and HC7N Isotopologues in TMC-1 with the Green Bank Telescope , 2017, 1711.07495.

[5]  P. Caselli,et al.  Nitrogen and hydrogen fractionation in high-mass star forming cores from observations of HCN and HNC , 2017, 1709.04237.

[6]  M. Saito,et al.  13C Isotopic Fractionation of HC3N in Two Starless Cores: L1521B and L134N (L183) , 2017, 1707.08267.

[7]  P. Caselli,et al.  The observed chemical structure of L1544 , 2017, 1707.06015.

[8]  T. Forveille,et al.  Direct evidence of multiple reservoirs of volatile nitrogen in a protosolar nebula analogue , 2017, 1706.10095.

[9]  M. Saito,et al.  First Detection of HC$_{5}$$^{15}$N in the Interstellar Medium , 2017, 1706.08662.

[10]  C. Vastel,et al.  Detection of the HC$_3$NH$^+$ and HCNH$^+$ ions in the L1544 pre-stellar core , 2017, 1706.00647.

[11]  Astronomy,et al.  15N Fractionation in Infrared-Dark Cloud Cores , 2017, 1705.04082.

[12]  R. Ivison,et al.  The evolution of CNO isotopes: a new window on cosmic star formation history and the stellar IMF in the age of ALMA , 2017, 1704.06701.

[13]  K. Oberg,et al.  Nitrogen Fractionation in Protoplanetary Disks from the H13CN/HC15N Ratio , 2017, 1701.07510.

[14]  J. Berthelier,et al.  Sulphur-bearing species in the coma of comet 67P/Churyumov–Gerasimenko , 2016 .

[15]  E. Jehin,et al.  Nitrogen isotopic ratios of NH2 in comets: implication for 15N-fractionation in cometary ammonia , 2016 .

[16]  N. Sakai,et al.  PRECISE OBSERVATIONS OF THE 12C/13C RATIOS OF HC3N IN THE LOW-MASS STAR-FORMING REGION L1527 , 2016, 1610.02793.

[17]  M. Saito,et al.  13C ISOTOPIC FRACTIONATION OF HC3N IN STAR-FORMING REGIONS: LOW-MASS STAR-FORMING REGION L1527 AND HIGH-MASS STAR-FORMING REGION G28.28-0.36 , 2016, 1608.01702.

[18]  A. Faure,et al.  Collisional excitation of HC3N by para- and ortho-H2 , 2016, 1605.03786.

[19]  M. Gerin,et al.  N$_2$H$^+$ and N$^{15}$NH$^+$ towards the prestellar core 16293E in L1689N , 2016, 1603.07128.

[20]  B. Marty,et al.  Nitrogen isotope variations in the Solar System , 2015 .

[21]  Hideyo Kawakita,et al.  Cometary Isotopic Measurements , 2015 .

[22]  T. Owen,et al.  Molecular nitrogen in comet 67P/Churyumov-Gerasimenko indicates a low formation temperature , 2015, Science.

[23]  È. Roueff,et al.  Isotopic fractionation of carbon, deuterium and nitrogen : a full chemical study , 2015, 1501.01141.

[24]  E. Bergin,et al.  THE EFFECTS OF INITIAL ABUNDANCES ON NITROGEN IN PROTOPLANETARY DISKS , 2014, 1411.1403.

[25]  P. Caselli,et al.  The dynamics of collapsing cores and star formation , 2014, 1410.5889.

[26]  C. Vastel,et al.  THE ORIGIN OF COMPLEX ORGANIC MOLECULES IN PRESTELLAR CORES , 2014, 1409.6565.

[27]  M. Bizzarro,et al.  Observations of nitrogen isotope fractionation in deeply embedded protostars. , 2014, Astronomy and astrophysics.

[28]  J. Lunine,et al.  Water: from clouds to planets , 2014, 1401.8103.

[29]  W. Ubachs,et al.  Isotope selective photodissociation of N-2 by the interstellar radiation field and cosmic rays , 2014, 1401.1630.

[30]  M. Gerin,et al.  Nitrogen isotopic ratios in Barnard 1: a consistent study of the N2H+, NH3, CN, HCN, and HNC isotopologues , 2013, 1309.5782.

[31]  M. Padovani,et al.  The CN/C15 N isotopic ratio towards dark clouds , 2013, 1308.4380.

[32]  P. Caselli,et al.  Detection of (15)NNH+ in L1544: non-LTE modelling of dyazenilium hyperfine line emission and accurate (14)N/(15)N values , 2013, 1306.0465.

[33]  L. Bonal,et al.  The 15N-enrichment in dark clouds and Solar System objects , 2013, 1302.6318.

[34]  V. Zhaunerchyk,et al.  REASSESSMENT OF THE DISSOCIATIVE RECOMBINATION OF N2H+ AT CRYRING , 2012 .

[35]  P. Caselli,et al.  FIRST DETECTION OF WATER VAPOR IN A PRE-STELLAR CORE , 2012, 1208.5998.

[36]  S. Charnley,et al.  ISOTOPIC ANOMALIES IN PRIMITIVE SOLAR SYSTEM MATTER: SPIN-STATE-DEPENDENT FRACTIONATION OF NITROGEN AND DEUTERIUM IN INTERSTELLAR CLOUDS , 2012, 1208.0192.

[37]  Michel Dobrijevic,et al.  Neutral production of hydrogen isocyanide (HNC) and hydrogen cyanide (HCN) in Titan's upper atmosphere , 2012 .

[38]  B. Lazareff,et al.  The EMIR multi-band mm-wave receiver for the IRAM 30-m telescope , 2012 .

[39]  L. Ziurys,et al.  MILLIMETER-WAVE OBSERVATIONS OF CN AND HNC AND THEIR 15N ISOTOPOLOGUES: A NEW EVALUATION OF THE 14N/15N RATIO ACROSS THE GALAXY , 2012 .

[40]  R. Wiens,et al.  A 15N-Poor Isotopic Composition for the Solar System As Shown by Genesis Solar Wind Samples , 2011, Science.

[41]  N. Sakai,et al.  CARBON ISOTOPE AND ISOTOPOMER FRACTIONATION IN COLD DENSE CLOUD CORES , 2011, 1102.2282.

[42]  L. Bonal,et al.  Highly 15N-enriched chondritic clasts in the CB/CH-like meteorite Isheyevo , 2010 .

[43]  N. Sakai,et al.  Abundance anomaly of the 13 C species of CCH , 2010 .

[44]  J. Aléon MULTIPLE ORIGINS OF NITROGEN ISOTOPIC ANOMALIES IN METEORITES AND COMETS , 2010 .

[45]  M. Walmsley,et al.  Nitrogen chemistry and depletion in starless cores , 2010, 1001.3930.

[46]  M. Gerin,et al.  NITROGEN ISOTOPIC FRACTIONATION IN INTERSTELLAR AMMONIA , 2010, 1001.0744.

[47]  E. Jehin,et al.  Isotopic Ratios in Comets: Status and Perspectives , 2009 .

[48]  L. Coudert,et al.  Detection of 15NH2D in dense cores : a new tool for measuring the 14N/15N ratio in the cold ISM , 2009, 0903.3155.

[49]  J. Black,et al.  A computer program for fast non-LTE analysis of interstellar line spectra With diagnostic plots to interpret observed line intensity ratios , 2007, 0704.0155.

[50]  M. A. Brewster,et al.  The 12C/13C Isotope Gradient Derived from Millimeter Transitions of CN: The Case for Galactic Chemical Evolution , 2005 .

[51]  C. Vastel,et al.  Detection of D2H+ in the Dense Interstellar Medium , 2004, astro-ph/0403537.

[52]  T. Miyaji,et al.  A 8.8-50 GHz Complete Spectral Line Survey toward TMC-1: I. Survey Data. , 2004 .

[53]  S. Charnley,et al.  The End of Interstellar Chemistry as the Origin of Nitrogen in Comets and Meteorites , 2002 .

[54]  E. Herbst,et al.  The possibility of nitrogen isotopic fractionation in interstellar clouds , 2000 .

[55]  Kaori Fukuzawa,et al.  A Molecular Orbital Study of the HC3NH++ e- Dissociative Recombination and Its Role in the Production of Cyanoacetylene Isomers in Interstellar Clouds , 1999 .

[56]  Kaori Fukuzawa,et al.  Molecular Orbital Study of Neutral-Neutral Reactions concerning HC3N Formation in Interstellar Space , 1997 .

[57]  Ian W. M. Smith,et al.  Rate constants for the reactions of CN with hydrocarbons at low and ultra-low temperatures , 1993 .

[58]  C. Lifshitz,et al.  Proton transfer reactions of C2H+2 : the bond energy D0 (C2HH) , 1990 .

[59]  W. D. Watson,et al.  Measurement and significance of the equilibrium reaction C-13/+/ + /C-12/O yields C-12/+/ + /C-13/O for alteration of the C-13/C-12 ratio in interstellar molecules , 1976 .

[60]  M. Davidson,et al.  Earth, Moon and Planets , 1947, Nature.

[61]  N. Kaifu,et al.  Chemical and physical evolution of dark clouds Molecular spectral line survey toward TMC-1 , 1998 .