Statistical methods for regular monitoring data
暂无分享,去创建一个
[1] Michael L. Stein,et al. Interpolation of spatial data , 1999 .
[2] Tony F. Chan,et al. Circulant preconditioners for Toeplitz-block matrices , 1994, Numerical Algorithms.
[3] Richard F. Gunst,et al. Identification of model components for a class of continuous spatiotemporal models , 2003 .
[4] Zhiyi Chi,et al. Approximating likelihoods for large spatial data sets , 2004 .
[5] N. Cressie,et al. Classes of nonseparable, spatio-temporal stationary covariance functions , 1999 .
[6] K. Mardia,et al. A Bayesian kriged Kalman model for short‐term forecasting of air pollution levels , 2005 .
[7] P. Brown,et al. Blur‐generated non‐separable space–time models , 2000 .
[8] George Christakos,et al. Random Field Models in Earth Sciences , 1992 .
[9] D. B. Preston. Spectral Analysis and Time Series , 1983 .
[10] A. Raftery,et al. Space-time modeling with long-memory dependence: assessing Ireland's wind-power resource. Technical report , 1987 .
[11] P. Caines. Linear Stochastic Systems , 1988 .
[12] Roger Woodard,et al. Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.
[13] Stanislav Kolenikov,et al. Spatiotemporal modeling of PM2.5 data with missing values , 2003 .
[14] G. Reinsel. Elements of Multivariate Time Series Analysis , 1995 .
[15] J. Whitaker,et al. Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter , 2001 .
[16] Peter Talkner,et al. Some remarks on spatial correlation function models , 1993 .
[17] Richard H. Jones,et al. Models for Continuous Stationary Space-Time Processes , 1997 .
[18] Marc G. Genton,et al. Predictive spatio-temporal models for spatially sparse environmental data , 2005 .
[19] Dionissios T. Hristopulos,et al. Methods for generating non-separable spatiotemporal covariance models with potential environmental applications , 2004 .
[20] R. J. Bennett,et al. Spatial time series : analysis-forecasting-control , 1979 .
[21] George Christakos,et al. Modern Spatiotemporal Geostatistics , 2000 .
[22] T. Gneiting. Correlation functions for atmospheric data analysis , 1999 .
[23] A. Yaglom. Correlation Theory of Stationary and Related Random Functions I: Basic Results , 1987 .
[24] A. V. Vecchia. Estimation and model identification for continuous spatial processes , 1988 .
[25] P. Houtekamer,et al. A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation , 2001 .
[26] D. E. Myers,et al. Nonseparable Space-Time Covariance Models: Some Parametric Families , 2002 .
[27] Nalini Ravishanker,et al. Bayesian prediction for vector ARFIMA processes , 2002 .
[28] T. Gneiting. Nonseparable, Stationary Covariance Functions for Space–Time Data , 2002 .
[29] L. Franks,et al. Book reviews - Time series - Data analysis and theory (expanded edn.) , 1981, IEEE Communications Magazine.
[30] S. Cohn,et al. Ooce Note Series on Global Modeling and Data Assimilation Construction of Correlation Functions in Two and Three Dimensions and Convolution Covariance Functions , 2022 .
[31] A. Balakrishnan,et al. Spectral theory of random fields , 1983 .
[32] Chunsheng Ma,et al. Families of spatio-temporal stationary covariance models , 2003 .
[33] I. Rodríguez‐Iturbe,et al. Random Functions and Hydrology , 1984 .
[34] Eric M. Aldrich,et al. Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center , 2006 .
[35] Phaedon C. Kyriakidis,et al. Geostatistical Space–Time Models: A Review , 1999 .
[36] S. De Iacoa,et al. Space – time analysis using a general product – sum model , 2000 .
[37] D. E. Myers,et al. The Linear Coregionalization Model and the Product–Sum Space–Time Variogram , 2003 .
[38] M. Stein. Space–Time Covariance Functions , 2005 .