Mixed quantum states in higher categories

There are two ways to describe the interaction between classical and quantum information categorically: one based on completely positive maps between Frobenius algebras, the other using symmetric monoidal 2-categories. This paper makes a first step towards combining the two. The integrated approach allows a unified description of quantum teleportation and classical encryption in a single 2-category, as well as a universal security proof applicable simultaneously to both scenarios.

[1]  Aleks Kissinger,et al.  Compositional Quantum Logic , 2013, Computation, Logic, Games, and Quantum Foundations.

[2]  Jamie Vicary,et al.  Bicategorical Semantics for Nondeterministic Computation , 2013, MFPS.

[3]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[4]  Samson Abramsky,et al.  H*-algebras and nonunital Frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics , 2010, 1011.6123.

[5]  Jamie Vicary,et al.  Categorical Formulation of Quantum Algebras , 2008 .

[6]  L. Wester Categorical Models for Quantum Computing , 2013 .

[7]  Aaron D. Lauda FROBENIUS ALGEBRAS AND AMBIDEXTROUS ADJUNCTIONS , 2005 .

[8]  Aleks Kissinger,et al.  Strong Complementarity and Non-locality in Categorical Quantum Mechanics , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[9]  Jamie Vicary,et al.  Groupoid Semantics for Thermal Computing , 2014, ArXiv.

[10]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[11]  John C. Baez Higher-Dimensional Algebra II. 2-Hilbert Spaces☆ , 1996 .

[12]  Jamie Vicary The Topology of Quantum Algorithms , 2012, 1209.3917.

[13]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[14]  Chris Heunen,et al.  Relative Frobenius algebras are groupoids , 2011, 1112.1284.

[15]  Jamie Vicary Topological Structure of Quantum Algorithms , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.

[16]  Aleks Kissinger,et al.  Categories of quantum and classical channels , 2016, Quantum Inf. Process..

[17]  Michiel Hazewinkel,et al.  Algebras, rings and modules , 2004 .

[18]  Aleks Kissinger,et al.  Completely positive projections and biproducts , 2013, QPL.

[19]  Jamie Vicary Higher Semantics of Quantum Protocols , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[20]  E. Størmer Positive linear maps of operator algebras , 2012 .

[21]  Edward G. Effros,et al.  Injectivity and operator spaces , 1977 .

[22]  Simon Perdrix,et al.  Environment and Classical Channels in Categorical Quantum Mechanics , 2010, CSL.

[23]  J. Vicary Categorical Formulation of Finite-Dimensional Quantum Algebras , 2008, 0805.0432.

[24]  Peter Selinger,et al.  Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract) , 2007, QPL.