WESD--Weighted Spectral Distance for Measuring Shape Dissimilarity

This paper presents a new distance for measuring shape dissimilarity between objects. Recent publications introduced the use of eigenvalues of the Laplace operator as compact shape descriptors. Here, we revisit the eigenvalues to define a proper distance, called Weighted Spectral Distance (WESD), for quantifying shape dissimilarity. The definition of WESD is derived through analyzing the heat trace. This analysis provides the proposed distance with an intuitive meaning and mathematically links it to the intrinsic geometry of objects. We analyze the resulting distance definition, present and prove its important theoretical properties. Some of these properties include: 1) WESD is defined over the entire sequence of eigenvalues yet it is guaranteed to converge, 2) it is a pseudometric, 3) it is accurately approximated with a finite number of eigenvalues, and 4) it can be mapped to the ([0,1)) interval. Last, experiments conducted on synthetic and real objects are presented. These experiments highlight the practical benefits of WESD for applications in vision and medical image analysis.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  ReuterMartin,et al.  Laplace-Beltrami eigenvalues and topological features of eigenfunctions for statistical shape analysis , 2009 .

[3]  M. Protter Can one hear the shape of a drum? revisited , 1987 .

[4]  Cesare Furlanello,et al.  An introduction to spectral distances in networks (extended version) , 2010, 1005.0103.

[5]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[6]  Iasonas Kokkinos,et al.  Scale-invariant heat kernel signatures for non-rigid shape recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  H. Damasio,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence: Special Issue on Perceptual Organization in Computer Vision , 1998 .

[8]  Å. Pleijel A study of certain Green's functions with applications in the theory of vibrating membranes , 1954 .

[9]  Leonidas J. Guibas,et al.  Shape Google: a computer vision approach to isometry invariant shape retrieval , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[10]  Guillermo Sapiro,et al.  A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Non-rigid Shape Matching , 2010, International Journal of Computer Vision.

[11]  Martha Elizabeth Shenton,et al.  Global Medical Shape Analysis Using the Laplace-Beltrami Spectrum , 2007, MICCAI.

[12]  Arthur W. Toga,et al.  Metric-induced optimal embedding for intrinsic 3D shape analysis , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[13]  Arthur W. Toga,et al.  Laplace-Beltrami nodal counts: A new signature for 3D shape analysis , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[14]  Paul Suetens,et al.  SHREC '11 Track: Shape Retrieval on Non-rigid 3D Watertight Meshes , 2011, 3DOR@Eurographics.

[15]  Claudio Perez Tamargo Can one hear the shape of a drum , 2008 .

[16]  Kim L. Boyer,et al.  A New Deformable Model for Boundary Tracking in Cardiac MRI and Its Application to the Detection of Intra-Ventricular Dyssynchrony , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[17]  Afzal Godil,et al.  Non-rigid 3D shape retrieval using Multidimensional Scaling and Bag-of-Features , 2010, 2010 IEEE International Conference on Image Processing.

[18]  Uzy Smilansky,et al.  Resolving isospectral 'drums' by counting nodal domains , 2005, nlin/0504050.

[19]  Paul Suetens,et al.  Isometric Deformation Modelling for Object Recognition , 2009, CAIP.

[20]  D. Vassilevich,et al.  Heat kernel expansion: user's manual , 2003, hep-th/0306138.

[21]  Kilian M. Pohl,et al.  Temporal Shape Analysis via the Spectral Signature , 2012, MICCAI.

[22]  Alexander M. Bronstein,et al.  Shape Recognition with Spectral Distances , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Lance Smith,et al.  The asymptotics of the heat equation for a boundary value problem , 1981 .

[24]  M. Kac Can One Hear the Shape of a Drum , 1966 .

[25]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[26]  Hao Zhang,et al.  Robust 3D Shape Correspondence in the Spectral Domain , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[27]  Arthur W. Toga,et al.  Construction of a 3D probabilistic atlas of human cortical structures , 2008, NeuroImage.

[28]  Martha Elizabeth Shenton,et al.  Laplace-Beltrami eigenvalues and topological features of eigenfunctions for statistical shape analysis , 2009, Comput. Aided Des..

[29]  F. Mémoli,et al.  A spectral notion of Gromov–Wasserstein distance and related methods , 2011 .

[30]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[31]  Hervé Delingette,et al.  A Statistical Model for Quantification and Prediction of Cardiac Remodelling: Application to Tetralogy of Fallot , 2011, IEEE Transactions on Medical Imaging.

[32]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[33]  Guojun Lu,et al.  Review of shape representation and description techniques , 2004, Pattern Recognit..

[34]  Qing-Ming Cheng,et al.  Bounds on eigenvalues of Dirichlet Laplacian , 2006 .

[35]  David L. Webb,et al.  Isospectral plane domains and surfaces via Riemannian orbifolds , 1992 .

[36]  H. Weyl Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .

[37]  H. McKean,et al.  Curvature and the Eigenvalues of the Laplacian , 1967 .

[38]  F. Bookstein,et al.  Geometric morphometrics of corpus callosum and subcortical structures in the fetal-alcohol-affected brain. , 2001, Teratology.

[39]  Paul Suetens,et al.  Feature detection on 3D face surfaces for pose normalisation and recognition , 2010, 2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS).

[40]  L. Verhoeven,et al.  Can one Hear the Shape of a Drum? , 2015 .

[41]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[42]  I. Gladwell,et al.  A Survey of Numerical Methods for Partial Differential Equations , 2021, An Introduction to Numerical Methods and Analysis.

[43]  Alfred M. Bruckstein,et al.  Analysis of Two-Dimensional Non-Rigid Shapes , 2008, International Journal of Computer Vision.

[44]  Bruno Lévy,et al.  Laplace-Beltrami Eigenfunctions Towards an Algorithm That "Understands" Geometry , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[45]  Karthik Ramani,et al.  Three-dimensional shape searching: state-of-the-art review and future trends , 2005, Comput. Aided Des..

[46]  R. Courant,et al.  Methods of Mathematical Physics, Vol. I , 1954 .

[47]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[48]  A. Bronstein,et al.  Shape Google : a computer vision approach to invariant shape retrieval , 2009 .

[49]  Uzy Smilansky,et al.  Can one count the shape of a drum? , 2006, Physical review letters.

[50]  Shing-Tung Yau,et al.  On the Schrödinger equation and the eigenvalue problem , 1983 .

[51]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .