Fermentative Production of Beta-Glucan: Properties and Potential Applications

[1]  M. Doble,et al.  Microbial cyclic β-(1→3),(1→6)-glucans as potential drug carriers: Interaction studies between cyclic β-glucans isolated from Bradyrhizobium japonicum and betulinic acid. , 2018, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[2]  M. Janowicz,et al.  Modification of the cell wall structure of Saccharomyces cerevisiae strains during cultivation on waste potato juice water and glycerol towards biosynthesis of functional polysaccharides. , 2018, Journal of biotechnology.

[3]  K. Khosravi‐Darani,et al.  Effective variables on production and structure of xanthan gum and its food applications: A review , 2017 .

[4]  S. Błażejak,et al.  The exopolysaccharides biosynthesis by Candida yeast depends on carbon sources , 2016 .

[5]  K. Toledo,et al.  (1→6)- and (1→3)(1→6)-β-glucans from Lasiodiplodia theobromae MMBJ: Structural characterization and pro-inflammatory activity. , 2015, Carbohydrate polymers.

[6]  J. Latgé,et al.  The Fungal Exopolysaccharide Galactosaminogalactan Mediates Virulence by Enhancing Resistance to Neutrophil Extracellular Traps , 2015, PLoS pathogens.

[7]  R. Dekker,et al.  Carboxymethylation of (1 → 6)-β-glucan (lasiodiplodan): Preparation, characterization and antioxidant evaluation. , 2015, Carbohydrate polymers.

[8]  E. Zavareze,et al.  Functional, thermal and rheological properties of oat β-glucan modified by acetylation. , 2015, Food chemistry.

[9]  Dahai Luo,et al.  A Crystal Structure of the Dengue Virus NS5 Protein Reveals a Novel Inter-domain Interface Essential for Protein Flexibility and Virus Replication , 2015, PLoS pathogens.

[10]  L. Fan,et al.  Optimization of culture medium compositions for gellan gum production by a halobacterium Sphingomonas paucimobilis. , 2015, Carbohydrate polymers.

[11]  K. Prabhakar,et al.  Microbial Exopolysaccharides: Biosynthesis and Potential Applications , 2014 .

[12]  S. Nie,et al.  Acetylation and carboxymethylation of the polysaccharide from Ganoderma atrum and their antioxidant and immunomodulating activities. , 2014, Food chemistry.

[13]  A. Synytsya,et al.  Structural analysis of glucans. , 2014, Annals of translational medicine.

[14]  Baojun Xu,et al.  Skin Health Promotion Effects of Natural Beta‐Glucan Derived from Cereals and Microorganisms: A Review , 2014, Phytotherapy research : PTR.

[15]  E. Park,et al.  Improved β-glucan yield using an Aureobasidium pullulans M-2 mutant strain in a 200-L pilot scale fermentor targeting industrial mass production , 2013, Biotechnology and Bioprocess Engineering.

[16]  Ming Ye,et al.  Phosphorylation and anti-tumor activity of exopolysaccharide from Lachnum YM120. , 2013, Carbohydrate polymers.

[17]  H. Ro,et al.  Generation and Evaluation of High β-Glucan Producing Mutant Strains of Sparassis crispa , 2013, Mycobiology.

[18]  Enrico Cabib,et al.  How carbohydrates sculpt cells: chemical control of morphogenesis in the yeast cell wall , 2013, Nature Reviews Microbiology.

[19]  R. Dekker,et al.  Sulfonation and anticoagulant activity of fungal exocellular β-(1→6)-D-glucan (lasiodiplodan). , 2013, Carbohydrate polymers.

[20]  A. Synytsya,et al.  Structural diversity of fungal glucans. , 2013, Carbohydrate polymers.

[21]  D. Banerjee,et al.  Fungal Exopolysaccharide: Production, Composition and Applications , 2013, Microbiology insights.

[22]  Hu Zhu,et al.  A three-stage culture process for improved exopolysaccharide production by Tremella fuciformis. , 2012, Bioresource Technology.

[23]  Z. Fortes,et al.  Lasiodiplodan, an exocellular (1→6)-β-d-glucan from Lasiodiplodia theobromae MMPI: production on glucose, fermentation kinetics, rheology and anti-proliferative activity , 2012, Journal of Industrial Microbiology & Biotechnology.

[24]  S. S. Islam,et al.  Isolation and characterization of an immunoenhancing glucan from alkaline extract of an edible mushroom, Lentinus squarrosulus (Mont.) Singer. , 2011, Carbohydrate research.

[25]  M. Kratchanova,et al.  Synthesis and Characterization of an Exopolysaccharide by Antarctic Yeast Strain Cryptococcus laurentii AL100 , 2011, Applied biochemistry and biotechnology.

[26]  Lina Zhang,et al.  Preparation, chain conformation and anti-tumor activities of water-soluble phosphated (1 → 3)-α-d-glucan from Poria cocos mycelia , 2011 .

[27]  I. S. Scarminio,et al.  Comparison of β-1,3-glucanase production by Botryosphaeria rhodina MAMB-05 and Trichoderma harzianum Rifai and its optimization using a statistical mixture-design , 2011 .

[28]  K. Pavlova,et al.  Effect of Different Carbon Sources on Biosynthesis of Exopolysaccharide from Antarctic Strain Cryptococcus Laurentii AL62 , 2011 .

[29]  J. Zhong,et al.  Nutritional requirements for the hyperproduction of bioactive exopolysaccharides by submerged fermentation of the edible medicinal fungus Cordyceps taii , 2010 .

[30]  R. Sen,et al.  An exopolysaccharide from a probiotic: Biosynthesis dynamics, composition and emulsifying activity , 2009 .

[31]  Jane-Yii Wu,et al.  Production and characterization of curdlan by Agrobacterium sp. , 2009 .

[32]  G. Sassaki,et al.  Three exopolysaccharides of the beta-(1-->6)-D-glucan type and a beta-(1-->3;1-->6)-D-glucan produced by strains of Botryosphaeria rhodina isolated from rotting tropical fruit. , 2008, Carbohydrate research.

[33]  J. Kennedy,et al.  Pullulan: Microbial sources, production and applications. , 2008, Carbohydrate polymers.

[34]  Hailong Yang,et al.  Influence of nutritional conditions on exopolysaccharide production by submerged cultivation of the medicinal fungus Shiraia bambusicola , 2008 .

[35]  G. Sassaki,et al.  An unusual water-soluble β-glucan from the basidiocarp of the fungus Ganoderma resinaceum , 2008 .

[36]  S. S. Islam,et al.  Structural analysis of a water-soluble glucan (Fr.I) of an edible mushroom, Pleurotus sajor-caju. , 2007, Carbohydrate research.

[37]  Ş. Çetinel,et al.  Acetaminophen-induced toxicity is prevented by β-d-glucan treatment in mice , 2006 .

[38]  C. Deschamps,et al.  Análise de crescimento de duas cultivares de cevada após tratamentos com elicitores e fungicidas , 2006 .

[39]  S. S. Islam,et al.  Chemical analysis of a new (1-->3)-, (1-->6)-branched glucan from an edible mushroom, Pleurotus florida. , 2005, Carbohydrate research.

[40]  J. Yun,et al.  A comparative study on the production of exopolysaccharides between two entomopathogenic fungi Cordyceps militaris and Cordyceps sinensis in submerged mycelial cultures , 2005, Journal of applied microbiology.

[41]  R. Tan,et al.  Purification, characterization and enzymatic degradation of YCP, a polysaccharide from marine filamentous fungus Phoma herbarum YS4108. , 2005, Biochimie.

[42]  C. Constantino,et al.  Purification and structural characterisation of (1 -> 3 ; 1 -> 6)-beta-D-glucans (botryosphaerans) from Botryosphaeria rhodina grown on sucrose and fructose as carbon sources: a comparative study , 2005 .

[43]  B. Stone,et al.  Curdlan and other bacterial (1→3)-β-d-glucans , 2005, Applied Microbiology and Biotechnology.

[44]  G. Sassaki,et al.  Glucans of lichenized fungi: significance for taxonomy of the genera Parmotrema and Rimelia. , 2005, Phytochemistry.

[45]  B. Humbel,et al.  The structure of cell wall α-glucan from fission yeast , 2005 .

[46]  A. Palleschi,et al.  Scleroglucan: A Versatile Polysaccharide for Modified Drug Delivery , 2005, Molecules.

[47]  E. Giese,et al.  Comparison of Botryosphaeran production by the ascomyceteous fungus Botryosphaeria sp., grown on different carbohydrate carbon sources, and their partial structural features , 2004, Journal of basic microbiology.

[48]  Cheng Sun,et al.  Free radical scavenging and antioxidant activities of EPS2, an exopolysaccharide produced by a marine filamentous fungus Keissleriella sp. YS 4108. , 2004, Life sciences.

[49]  M. J. D. silva,et al.  Producao e aplicacoes de exopolissacarideos fungicos , 2004 .

[50]  J. Yun,et al.  Influence of aeration on the production and the quality of the exopolysaccharides from Paecilomyces tenuipes C240 in a stirred-tank fermenter , 2004 .

[51]  C. Shu,et al.  Effect of pH on the production and molecular weight distribution of exopolysaccharide by Antrodia camphorata in batch cultures , 2004 .

[52]  Y. Rhee,et al.  Enhanced production of (1 → 3)-β-d-glucan by a mutant strain of Agrobacterium species , 2003 .

[53]  F. R. Rosado,et al.  Biomass and exopolysaccharide production in submerged cultures of Pleurotus ostreatoroseus Sing. and Pleurotus ostreatus “florida” (Jack.: Fr.) Kummer , 2003, Journal of basic microbiology.

[54]  I. Maddox,et al.  Exopolysaccharides from lactic acid bacteria: perspectives and challenges. , 2003, Trends in biotechnology.

[55]  F. Nigro,et al.  Effects of Pre‐ and Postharvest Chitosan Treatments to Control Storage Grey Mold of Table Grapes , 2002 .

[56]  L. Selbmann,et al.  Exopolysaccharide production from Sclerotium glucanicum NRRL 3006 and Botryosphaeria rhodina DABAC‐P82 on raw and hydrolysed starchy materials , 2002, Letters in applied microbiology.

[57]  C. Biliaderis,et al.  Physicochemical properties and application of pullulan edible films and coatings in fruit preservation , 2001 .

[58]  R. Seviour,et al.  The production of exopolysaccharides by Aureobasidium pullulans in fermenters with low-shear configurations , 1998, Applied Microbiology and Biotechnology.

[59]  M. Leisola,et al.  Structure of the β-D-glucan secreted by Phanerochaete chrysosporium in continuous culture , 1987 .

[60]  P. Sandford Exocellular, microbial polysaccharides. , 1979, Advances in carbohydrate chemistry and biochemistry.

[61]  J. Jelsma,et al.  Ultrastructural observations on (1→3)-β-D-glucan from fungal cell-walls , 1975 .

[62]  T. E. Timell,et al.  Structure and molecular size of pachyman. , 1971, Carbohydrate Research.

[63]  S. Nie,et al.  Beta-Glucans and Their Derivatives , 2018 .

[64]  Baojun Xu,et al.  A critical review on production and industrial applications of beta-glucans , 2016 .

[65]  C. Soccol,et al.  Exopolysaccharide from Agaricus brasiliensis LPB and its Scale Up Studies in a Stirred Tank Fermenter. , 2015 .

[66]  M. Kanlayavattanakul,et al.  Biopolysaccharides for Skin Hydrating Cosmetics , 2014 .

[67]  B. Cui,et al.  Chemical characterization and structure of exopolysaccharides from submerged culture of new medicinal mushroom from China, Phellinus mori (higher Basidiomycetes). , 2013, International Journal of Medicinal Mushrooms.

[68]  D. Olennikov,et al.  Branched glucan from the fruiting bodies of Piptoporus betulinus (Bull.:Fr) Karst. , 2012, Applied Biochemistry and Microbiology.

[69]  F. Mouafi,et al.  Acidic pH-Shock Induces the Production of an Exopolysaccharide by the Fungus Mucor rouxii: Utilization of Beet-Molasses , 2012 .

[70]  S. Jia,et al.  Optimization of Effect Factors for Mycelial Growth and Exopolysaccharide Production by Schizophyllum commune , 2010, Applied biochemistry and biotechnology.

[71]  S. W. Kim,et al.  High Cell Density Fermentation of Saccharomyces cerevisiae JUL 3 in Fed-batch Culture for the Production of β-Glucan , 2007 .

[72]  M. Iacomini,et al.  Polysaccharides from the fruit bodies of the basidiomycete Laetiporus sulphureus (Bull.: Fr.) Murr. , 2004, FEMS microbiology letters.

[73]  I. Sutherland Biofilm exopolysaccharides: a strong and sticky framework. , 2001, Microbiology.

[74]  J. Joseleau,et al.  Structure of extracellular polysaccharide produced by lignin-degrading fungus Phlebia radiata in liquid culture. , 1999, International journal of biological macromolecules.

[75]  P. Rupérez,et al.  Extracellular polysaccharide production by Aspergillus nidulans , 1978 .

[76]  W. Bancroft RESEARCH PROBLEMS IN COLLOID CHEMISTRY. , 1921 .