Dynamics of entangled linear polymer melts: A molecular‐dynamics simulation

We present an extensive molecular‐dynamics simulation for a bead spring model of a melt of linear polymers. The number of monomers N covers the range from N=5 to N=400. Since the entanglement length Ne is found to be approximately 35, our chains cover the crossover from the nonentangled to the entangled regime. The Rouse model provides an excellent description for short chains N<Ne, while the dynamics of the long chains can be described by the reptation model. By mapping the model chains onto chemical species we give estimates of the times and distances of onset of the slowing down in motion due to reptation. Comparison to neutron spin‐echo data confirm our mapping procedure, resolving a discrepancy between various experiments. By considering the primitive chain we are able to directly visualize the confinement to a tube. Analyzing the Rouse mode relaxation allows us to exclude the generalized Rouse models, while the original reptation prediction gives a good description of the data.

[1]  J. Noolandi,et al.  Entanglement scaling in polymer melts and solutions , 1989 .

[2]  K. Kremer,et al.  Thermodynamic properties of star polymers: good solvents , 1989 .

[3]  K. Schweizer Mode-coupling theory of the dynamics of polymer liquids: Qualitative predictions for flexible chain and ring melts , 1989 .

[4]  Kurt Kremer,et al.  Vectorized link cell Fortran code for molecular dynamics simulations for a large number of particles , 1989 .

[5]  Murat,et al.  Interaction between grafted polymeric brushes: A molecular-dynamics study. , 1989, Physical review letters.

[6]  G. Grest,et al.  A comparison between integral equation theory and molecular dynamics simulations of dense, flexible polymer liquids , 1989 .

[7]  Scott T. Milner,et al.  Relaxation of self-entangled many-arm star polymers , 1989 .

[8]  Wagner,et al.  Microscopic dynamics and topological constraints in polymer melts: A neutron-spin-echo study. , 1989, Physical review letters.

[9]  S. Edwards,et al.  New model of polymer entanglement: Localized Gauss integral model. Plateau modulus GN, topological second virial coefficient Aθ2 and physical foundation of the tube model , 1989 .

[10]  M. Fixman Chain entanglements. II. Numerical results , 1988 .

[11]  J. Noolandi,et al.  A new theory of entanglements and dynamics in dense polymer systems , 1988 .

[12]  Kremer,et al.  Crossover from Rouse to reptation dynamics: A molecular-dynamics simulation. , 1988, Physical review letters.

[13]  J. Kovac,et al.  Effect of lattice coordination number on the dynamics of models of dense polymer systems , 1988 .

[14]  Kurt Kremer,et al.  Monte Carlo simulation of lattice models for macromolecules , 1988 .

[15]  G. Grest,et al.  Phase diagram and dynamics of Yukawa systems , 1988 .

[16]  S. Edwards,et al.  The tube model theory of rubber elasticity , 1988 .

[17]  J. Skolnick,et al.  Phenomenological theory of the dynamics of polymer melts. II. Viscoelastic properties , 1988 .

[18]  W. Graessley Viscoelasticity and Diffusion in Entangled Polymer Melts , 1988 .

[19]  G. Schnur,et al.  The tube concept of macromolecular liquids in the light of NMR experiments , 1988 .

[20]  David Fincham,et al.  Parallel Computers and Molecular Simulation , 1987 .

[21]  Rubinstein Discretized model of entangled-polymer dynamics. , 1987, Physical Review Letters.

[22]  W. Hess Tracer diffusion in polymeric mixtures , 1987 .

[23]  M. Antonietti,et al.  Critical chain lengths in polystyrene bulk diffusion , 1987 .

[24]  R. Colby,et al.  The melt viscosity-molecular weight relationship for linear polymers , 1987 .

[25]  D. S. Pearson,et al.  Viscosity and self-diffusion coefficient of linear polyethylene , 1987 .

[26]  D. S. Pearson Recent advances in the molecular aspects of polymer viscoelasticity , 1987 .

[27]  Andrzej Kolinski,et al.  Does reptation describe the dynamics of entangled, finite length polymer systems? A model simulation , 1987 .

[28]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[29]  W. Graessley,et al.  Effects of polydispersity on the linear viscoelastic properties of entangled polymers. 2. Comparison of viscosity and recoverable compliance with tube model predictions , 1986 .

[30]  M. Shlesinger,et al.  On reptation in polymer melts , 1986 .

[31]  Kremer,et al.  Molecular dynamics simulation for polymers in the presence of a heat bath. , 1986, Physical review. A, General physics.

[32]  G Gaspari,et al.  The aspherity of random walks , 1986 .

[33]  J. Kovac,et al.  Normal-coordinate analysis of the dynamics of cubic lattice models of polymer chains , 1985 .

[34]  Deutsch Jm,et al.  Towards an explanation of the 3.4-power dependence of the viscosity on molecular weight. , 1985 .

[35]  J. Roots,et al.  Effects of entanglements on the single-chain motion of polymer molecules in melt samples observed by neutron scattering , 1985 .

[36]  K. Binder Applications of the Monte Carlo Method in Statistical Physics , 2012 .

[37]  Kurt Kremer,et al.  Dynamics of polymer chains confined into tubes: Scaling theory and Monte Carlo simulations , 1984 .

[38]  D. Kranbuehl,et al.  Simulation of the dynamic and equilibrium properties of many-chain polymer systems , 1984 .

[39]  R. Needs Computer simulation of the effect of primitive path length fluctuations in the reptation model , 1984 .

[40]  Artur Baumgärtner,et al.  SIMULATION OF POLYMER MOTION , 1984 .

[41]  J. D. Cloizeaux Polymer melt : reptation of a chain and viscosity , 1984 .

[42]  K. Kremer,et al.  Moving Defects in Entangled Polymers , 1983 .

[43]  Kurt Kremer,et al.  Statics and dynamics of polymeric melts: a numerical analysis , 1983 .

[44]  G. Ronca Frequency spectrum and dynamic correlations of concentrated polymer liquids , 1983 .

[45]  M. Doi Explanation for the 3.4-power law for viscosity of polymeric liquids on the basis of the tube model , 1983 .

[46]  S. Edwards Dynamics of entangled polymers , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[47]  Farid F. Abraham,et al.  Computer-Simulation Dynamics of an Unstable Two-Dimensional Fluid: Time-Dependent Morphology and Scaling , 1982 .

[48]  K. Binder,et al.  Richteret al.Respond , 1982 .

[49]  J. M. Deutsch,et al.  Coherent Scattering from Polymer Melts , 1982 .

[50]  M. Kalos,et al.  Investigations of model polymers: Dynamics of melts and statics of a long chain in a dilute melt of shorter chains , 1982 .

[51]  M. Delsanti,et al.  Structural, elastic, and dynamic properties of swollen polymer networks , 1982 .

[52]  W. Bruns,et al.  Molecular dynamics study of a single polymer chain in solution. II. Bead–spring model , 1981 .

[53]  S. Edwards,et al.  Entanglement interactions in polymers and the chain contour concentration , 1981 .

[54]  K. Binder,et al.  Dynamics of entangled polymer melts: A computer simulation , 1981 .

[55]  H. Wendel Generalized reptation model , 1981 .

[56]  M. Doi Explanation for the 3.4 power law of viscosity of polymeric liquids on the basis of the tube model , 1981 .

[57]  P. Gennes Dynamics of fluctuations and spinodal decomposition in polymer blends , 1980 .

[58]  G. T. Evans,et al.  Brownian dynamics simulation of alkane chain reorientation: A comparison of models , 1980 .

[59]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[60]  S. Edwards,et al.  Dynamics of concentrated polymer systems. Part 4.—Rheological properties , 1979 .

[61]  E. Helfand,et al.  Brownian dynamics study of transitions in a polymer chain of bistable oscillators , 1978 .

[62]  R. Bird Dynamics of Polymeric Liquids , 1977 .

[63]  C. W. Gear,et al.  Numerical initial value problem~ in ordinary differential eqttations , 1971 .

[64]  P. Gennes,et al.  Reptation of a Polymer Chain in the Presence of Fixed Obstacles , 1971 .

[65]  M. Volkenstein,et al.  Statistical mechanics of chain molecules , 1970 .

[66]  T. Fox,et al.  The viscosity of polymers and their concentrated solutions , 1968 .

[67]  S F Edwards,et al.  The statistical mechanics of polymerized material , 1967 .

[68]  J. Ferry Viscoelastic properties of polymers , 1961 .

[69]  P. E. Rouse A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers , 1953 .