Advanced Materials for Energy Storage

Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high‐performance hydrogen storage materials for on‐board applications and electrochemical energy storage materials for lithium‐ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano‐/microcombination, hybridization, pore‐structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.

[1]  E. C. Ashby The Direct Synthesis of Amine Alanes , 1964 .

[2]  J. Reilly,et al.  Reaction of hydrogen with alloys of magnesium and copper , 1967 .

[3]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[4]  M. Tkacz,et al.  The Equilibrium Between Solid Aluminium Hydride and Gaseous Hydrogen , 1983 .

[5]  J. Tarascon,et al.  CoO2, the end member of the LixCoO2 solid solution , 1996 .

[6]  Hang Shi,et al.  Activated carbons and double layer capacitance , 1996 .

[7]  B. Bogdanovic,et al.  Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials , 1997 .

[8]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[9]  Michael M. Thackeray,et al.  Manganese oxides for lithium batteries , 1997 .

[10]  R. Hoch,et al.  High power electrochemical capacitors based on carbon nanotube electrodes , 1997 .

[11]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[12]  A. Chambers,et al.  Hydrogen Storage in Graphite Nanofibers , 1998 .

[13]  L. Dao,et al.  Electrochemical impedance spectroscopy of porous electrodes: the effect of pore size distribution , 1999 .

[14]  M. Yudasaka,et al.  Nano-aggregates of single-walled graphitic carbon nano-horns , 1999 .

[15]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[16]  Keith Lovegrove,et al.  The first ammonia based solar thermochemical energy storage demonstration , 1999 .

[17]  B. Dunn,et al.  Morphology and Electrochemistry of Ruthenium/Carbon Aerogel Nanostructures , 1999 .

[18]  A. Załuska,et al.  Nanocrystalline magnesium for hydrogen storage , 1999 .

[19]  Thomas F. Koetzle,et al.  Study of the N−H···H−B Dihydrogen Bond Including the Crystal Structure of BH3NH3 by Neutron Diffraction , 1999 .

[20]  K. Méténier,et al.  Supercapacitor electrodes from multiwalled carbon nanotubes , 2000 .

[21]  Michael T. Kelly,et al.  A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst , 2000 .

[22]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[23]  F. Béguin,et al.  Supercapacitors from nanotubes/polypyrrole composites , 2001 .

[24]  Gary G. Tibbetts,et al.  Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers , 2001 .

[25]  B. Wei,et al.  Electric double-layer capacitors using carbon nanotube electrodes and organic electrolyte , 2001 .

[26]  Hsisheng Teng,et al.  Performance of electric double-layer capacitors using carbons prepared from phenol–formaldehyde resins by KOH etching , 2001 .

[27]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[28]  M. Dresselhaus,et al.  Vapor-grown carbon fibers (VGCFs): Basic properties and their battery applications , 2001 .

[29]  Tao Zheng,et al.  An Asymmetric Hybrid Nonaqueous Energy Storage Cell , 2001 .

[30]  Young Hee Lee,et al.  Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes , 2001 .

[31]  J. Fricke,et al.  Carbon aerogels derived from cresol–resorcinol–formaldehyde for supercapacitors , 2002 .

[32]  K. L. Tan,et al.  Interaction of hydrogen with metal nitrides and imides , 2002, Nature.

[33]  M. Fichtner,et al.  Magnesium alanate-a material for reversible hydrogen storage? , 2003 .

[34]  G. Chen,et al.  Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole , 2002 .

[35]  Chi-Chang Hu,et al.  Improving the utilization of ruthenium oxide within thick carbon–ruthenium oxide composites by annealing and anodizing for electrochemical supercapacitors , 2002 .

[36]  F. Béguin,et al.  Electrochemical storage of energy in carbon nanotubes and nanostructured carbons , 2002 .

[37]  J. Baumann,et al.  Thermal decomposition of B–N–H compounds investigated by using combined thermoanalytical methods , 2002 .

[38]  Wenzhi Li,et al.  Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors , 2002 .

[39]  B. Scrosati,et al.  Advances in lithium-ion batteries , 2002 .

[40]  A. Saito Recent advances in research on cold thermal energy storage , 2002 .

[41]  K. L. Tan,et al.  Interaction between Lithium Amide and Lithium Hydride , 2003 .

[42]  E. Ruckenstein,et al.  Ultrafast Reaction between LiH and NH3 during H2 Storage in Li3N , 2003 .

[43]  L. Dao,et al.  Electropolymerization of aniline on carbonized polyacrylonitrile aerogel electrodes: applications for supercapacitors , 2003 .

[44]  T. Klassen,et al.  Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst , 2003 .

[45]  Seung M. Oh,et al.  Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. , 2003, Journal of the American Chemical Society.

[46]  J. Tirado Inorganic materials for the negative electrode of lithium-ion batteries: state-of-the-art and future prospects , 2003 .

[47]  I. Honma,et al.  Lithium Storage in Ordered Mesoporous Carbon (CMK‐3) with High Reversible Specific Energy Capacity and Good Cycling Performance , 2003 .

[48]  Robert C. Bowman,et al.  Altering Hydrogen Storage Properties by Hydride Destabilization through Alloy Formation: LiH and MgH2 Destabilized with Si , 2004 .

[49]  Min Gyu Kim,et al.  Nanoparticle iron-phosphate anode material for Li-ion battery , 2004 .

[50]  Chi-Chang Hu,et al.  Effects of Electrochemical Activation and Multiwall Carbon Nanotubes on the Capacitive Characteristics of Thick MnO2 Deposits , 2004 .

[51]  Derek J. Fray,et al.  Redox deposition of manganese oxide on graphite for supercapacitors , 2004 .

[52]  A. B. Fuertes,et al.  Influence of pore structure on electric double-layer capacitance of template mesoporous carbons , 2004 .

[53]  W. Grochala,et al.  Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. , 2004, Chemical reviews.

[54]  T. Hyeon,et al.  Synthesis of new nanoporous carbon materials using nanostructured silica materials as templates , 2004 .

[55]  Suping Liu,et al.  Microstructure and hydrogen storage property of Mg/MWNTs composites , 2004 .

[56]  Kun-Hong Lee,et al.  Electrical properties of electrical double layer capacitors with integrated carbon nanotube electrodes , 2004 .

[57]  H. Fujii,et al.  Mechanism of Novel Reaction from LiNH2 and LiH to Li2NH and H2 as a Promising Hydrogen Storage System , 2004 .

[58]  A. Fletcher,et al.  Hysteretic Adsorption and Desorption of Hydrogen by Nanoporous Metal-Organic Frameworks , 2004, Science.

[59]  Amar M. Khudhair,et al.  A review on phase change energy storage: materials and applications , 2004 .

[60]  S. Tolbert,et al.  The Relationship Between Nanoscale Structure and Electrochemical Properties of Vanadium Oxide Nanorolls , 2004 .

[61]  François Béguin,et al.  Supercapacitor electrodes from new ordered porous carbon materials obtained by a templating procedure , 2004 .

[62]  L. Kavan,et al.  Lithium Storage in Nanostructured TiO2 Made by Hydrothermal Growth , 2004 .

[63]  Weifang Luo,et al.  (LiNH2-MgH2): a viable hydrogen storage system , 2004 .

[64]  Jianjiang Hu,et al.  Ternary Imides for Hydrogen Storage , 2004 .

[65]  B. Tu,et al.  Ordered, Nanostructured Tin‐Based Oxides/Carbon Composite as the Negative‐Electrode Material for Lithium‐Ion Batteries , 2004 .

[66]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[67]  T. Horikawa,et al.  Controllability of pore characteristics of resorcinol–formaldehyde carbon aerogel , 2004 .

[68]  G. Lu,et al.  Effects of SWNT and metallic catalyst on hydrogen absorption/desorption performance of MgH2. , 2005, The journal of physical chemistry. B.

[69]  Zhongtai Zhang,et al.  Layered Hydrogen Titanate Nanowires with Novel Lithium Intercalation Properties , 2005 .

[70]  H. Hatori,et al.  Supercapacitors Prepared from Melamine-Based Carbon , 2005 .

[71]  Anthony J. Lachawiec,et al.  Hydrogen storage in nanostructured carbons by spillover: bridge-building enhancement. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[72]  Ping-Ou Chen,et al.  Thermodynamic and kinetic investigations of the hydrogen storage in the Li–Mg–N–H system , 2005 .

[73]  Hydrogen desorption exceeding ten weight percent from the new quaternary hydride Li3BN2H8. , 2005, The journal of physical chemistry. B.

[74]  N. Ohba,et al.  First-principles study on copper-substituted lithium borohydride, (Li1−xCux)BH4 , 2005 .

[75]  Chi-Chang Hu,et al.  Effects of pore structure and electrolyte on the capacitive characteristics of steam- and KOH-activated carbons for supercapacitors , 2005 .

[76]  Byung Chul Jang,et al.  Simple Synthesis of Hollow Tin Dioxide Microspheres and Their Application to Lithium‐Ion Battery Anodes , 2005 .

[77]  Li-Jun Wan,et al.  Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. , 2005, Angewandte Chemie.

[78]  Jisuk Kim,et al.  Controlled Nanoparticle Metal Phosphates (Metal = Al , Fe, Ce, and Sr) Coatings on LiCoO2 Cathode Materials , 2005 .

[79]  Justin C. Lytle,et al.  Synthesis and Rate Performance of Monolithic Macroporous Carbon Electrodes for Lithium‐Ion Secondary Batteries , 2005 .

[80]  J. H. van Lenthe,et al.  Hydrogen storage in magnesium clusters: quantum chemical study. , 2005, Journal of the American Chemical Society.

[81]  Hui-Ming Cheng,et al.  Carbon nanotubes for clean energy applications , 2005 .

[82]  Florian Mertens,et al.  Reversible storage of hydrogen in destabilized LiBH4. , 2005, The journal of physical chemistry. B.

[83]  J. Duh,et al.  Improving the electrochemical performance of LiCoO2 cathode by nanocrystalline ZnO coating , 2005 .

[84]  H. Fujii,et al.  Rechargeable hydrogen storage in nanostructured mixtures of hydrogenated carbon and lithium hydride , 2005 .

[85]  Michael Holzapfel,et al.  A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion. , 2005, Chemical communications.

[86]  Peter G. Bruce,et al.  Lithium‐Ion Intercalation into TiO2‐B Nanowires , 2005 .

[87]  B. D. Kay,et al.  Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. , 2005, Angewandte Chemie.

[88]  Y. Gogotsi,et al.  Double-Layer Capacitance of Carbide Derived Carbons in Sulfuric Acid , 2005 .

[89]  L. Zhen,et al.  Synthesis and characterization of single-crystalline alkali titanate nanowires. , 2005, Journal of the American Chemical Society.

[90]  H. Munakata,et al.  Preparation of micro-dot electrodes of LiCoO2 and Li4Ti5O12 for lithium micro-batteries , 2005 .

[91]  Yong-Hyun Kim,et al.  Hydrogen storage in novel organometallic buckyballs. , 2005, Physical review letters.

[92]  T Yildirim,et al.  Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium. , 2005, Physical review letters.

[93]  T. Lim,et al.  Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors. , 2005, Small.

[94]  Feng Jiao,et al.  Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post-templating reaction. , 2005, Angewandte Chemie.

[95]  K. I. Goldberg,et al.  Efficient catalysis of ammonia borane dehydrogenation. , 2006, Journal of the American Chemical Society.

[96]  J. Jang,et al.  Hydrous RuO2/carbon black nanocomposites with 3D porous structure by novel incipient wetness method for supercapacitors , 2006 .

[97]  François Béguin,et al.  A High‐Performance Carbon for Supercapacitors Obtained by Carbonization of a Seaweed Biopolymer , 2006 .

[98]  R. Holze,et al.  Surface modifications of electrode materials for lithium ion batteries , 2006 .

[99]  J. Tarascon,et al.  High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications , 2006, Nature materials.

[100]  J. Lee,et al.  Crystalline carbon hollow spheres, crystalline carbon-SnO2 hollow spheres, and crystalline SnO2 hollow spheres: Synthesis and performance in reversible Li-ion storage , 2006 .

[101]  Ying Shirley Meng,et al.  Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries , 2006, Science.

[102]  C. Feng,et al.  Low-temperature synthesis of alpha-MnO2 hollow urchins and their application in rechargeable Li+ batteries. , 2006, Inorganic chemistry.

[103]  Thomas Klassen,et al.  Catalytic mechanism of transition-metal compounds on Mg hydrogen sorption reaction. , 2006, The journal of physical chemistry. B.

[104]  Physiochemical pathway for cyclic dehydrogenation and rehydrogenation of LiAlH4. , 2006, Journal of the American Chemical Society.

[105]  G. Yushin,et al.  Carbide‐Derived Carbons: Effect of Pore Size on Hydrogen Uptake and Heat of Adsorption , 2006 .

[106]  Robert Butterick,et al.  Amineborane-based chemical hydrogen storage: enhanced ammonia borane dehydrogenation in ionic liquids. , 2006, Journal of the American Chemical Society.

[107]  Ying Wang,et al.  Electrochemical Characterization of a Three Dimensionally Ordered Macroporous Anatase TiO2 Electrode , 2006 .

[108]  Wei Xing,et al.  Superior electric double layer capacitors using ordered mesoporous carbons , 2006 .

[109]  Chang Liu,et al.  Electrochemical performance of pyrolytic carbon-coated natural graphite spheres , 2006 .

[110]  Kinetic behavior of Ti-doped NaAlH4 when cocatalyzed with carbon nanostructures. , 2006, The journal of physical chemistry. B.

[111]  Omar M Yaghi,et al.  Exceptional H2 saturation uptake in microporous metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[112]  Enhanced solid-state metathesis routes to carbon nanotubes. , 2006, Inorganic chemistry.

[113]  S. Hino,et al.  Remarkable improvement of hydrogen sorption kinetics in magnesium catalyzed with Nb2O5 , 2006 .

[114]  S. Ciraci,et al.  Transition-metal-ethylene complexes as high-capacity hydrogen-storage media. , 2006, Physical review letters.

[115]  Zhong-Min Su,et al.  Optimized LiFePO4–Polyacene Cathode Material for Lithium‐Ion Batteries , 2006 .

[116]  R. T. Yang,et al.  Significantly enhanced hydrogen storage in metal-organic frameworks via spillover. , 2006, Journal of the American Chemical Society.

[117]  Xiaofeng Wang,et al.  Hydrous Ruthenium Oxide with High Rate Pseudo-Capacitance Prepared by a New Sol-Gel Process , 2006 .

[118]  Woon Ih Choi,et al.  Combinatorial search for optimal hydrogen-storage nanomaterials based on polymers. , 2006, Physical review letters.

[119]  P. Taberna,et al.  Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer , 2006, Science.

[120]  Yong Jung Kim,et al.  Fabrication of Electrospinning‐Derived Carbon Nanofiber Webs for the Anode Material of Lithium‐Ion Secondary Batteries , 2006 .

[121]  Andreas Stein,et al.  Effects of Hierarchical Architecture on Electronic and Mechanical Properties of Nanocast Monolithic Porous Carbons and Carbon−Carbon Nanocomposites , 2006 .

[122]  G. Lu,et al.  Effect of carbon/noncarbon addition on hydrogen storage behaviors of magnesium hydride , 2006 .

[123]  J. Maier,et al.  High Lithium Electroactivity of Nanometer‐Sized Rutile TiO2 , 2006 .

[124]  R. Torresi,et al.  Cathodes for lithium ion batteries: the benefits of using nanostructured materials , 2006 .

[125]  Feng Li,et al.  Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries , 2006 .

[126]  Changzheng Wu,et al.  Synthesis of New‐Phased VOOH Hollow “Dandelions” and Their Application in Lithium‐Ion Batteries , 2006 .

[127]  Yury Gogotsi,et al.  Effect of pore size and surface area of carbide derived carbons on specific capacitance , 2006 .

[128]  X. Qiu,et al.  Nanoparticled Li(Ni1/3Co1/3Mn1/3)O2 as cathode material for high-rate lithium-ion batteries , 2006 .

[129]  Yong Wang,et al.  Highly Reversible Lithium Storage in Porous SnO2 Nanotubes with Coaxially Grown Carbon Nanotube Overlayers , 2006 .

[130]  H.Q. Li,et al.  Ordered Whiskerlike Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance , 2006 .

[131]  J. Graetz,et al.  Thermodynamics of the a , and ? polymorphs of AlH 3 , 2006 .

[132]  Yong Wang,et al.  Template‐Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity , 2006 .

[133]  J. Goodenough,et al.  LiNi0.5+δMn0.5–δO2—A High‐Rate, High‐Capacity Cathode for Lithium Rechargeable Batteries , 2006 .

[134]  G. Lu,et al.  Effect of pore packing defects in 2-d ordered mesoporous carbons on ionic transport. , 2006, The journal of physical chemistry. B.

[135]  Henrietta W. Langmi,et al.  Towards polymer-based hydrogen storage materials: engineering ultramicroporous cavities within polymers of intrinsic microporosity. , 2006, Angewandte Chemie.

[136]  Ping Chen,et al.  Mechanistic investigations on the heterogeneous solid-state reaction of magnesium amides and lithium hydrides. , 2006, The journal of physical chemistry. B.

[137]  Craig M. Brown,et al.  Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites. , 2006, Journal of the American Chemical Society.

[138]  Chang Liu,et al.  Urchin-like nano/micro hybrid anode materials for lithium ion battery , 2006 .

[139]  S. Pyun,et al.  Theoretical approach to ion penetration into pores with pore fractal characteristics during double-layer charging/discharging on a porous carbon electrode. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[140]  Min Liu,et al.  Single-walled carbon nanotubes modified by electrochemical treatment for application in electrochemical capacitors , 2006 .

[141]  H. Hatori,et al.  Electrochemical Performance of Nitrogen-Enriched Carbons in Aqueous and Non-Aqueous Supercapacitors , 2006 .

[142]  Y. Chiang,et al.  Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes , 2006, Science.

[143]  A. J. Blake,et al.  High H2 adsorption by coordination-framework materials. , 2006, Angewandte Chemie.

[144]  Hui‐Ming Cheng,et al.  Advantage of TiF(3) over TiCl(3) as a dopant precursor to improve the thermodynamic property of Na(3)AlH(6) , 2007 .

[145]  John J. Vajo,et al.  Hydrogen storage in destabilized chemical systems , 2007 .

[146]  E. Frąckowiak,et al.  Nanotubes based composites rich in nitrogen for supercapacitor application , 2007 .

[147]  S. Stankovich,et al.  Preparation and characterization of graphene oxide paper , 2007, Nature.

[148]  P. Ajayan,et al.  Flexible energy storage devices based on nanocomposite paper , 2007, Proceedings of the National Academy of Sciences.

[149]  Jaephil Cho,et al.  Sn(78)Ge(22)@carbon core-shell nanowires as fast and high-capacity lithium storage media. , 2007, Nano letters.

[150]  Markus Antonietti,et al.  High Electroactivity of Polyaniline in Supercapacitors by Using a Hierarchically Porous Carbon Monolith as a Support , 2007 .

[151]  Sean C. Smith,et al.  Metallic and carbon nanotube-catalyzed coupling of hydrogenation in magnesium. , 2007, Journal of the American Chemical Society.

[152]  Feng Jiao,et al.  Mesoporous Crystalline β‐MnO2—a Reversible Positive Electrode for Rechargeable Lithium Batteries , 2007 .

[153]  In-Sung Hwang,et al.  Highly conductive coaxial SnO(2)-In(2)O(3) heterostructured nanowires for Li ion battery electrodes. , 2007, Nano letters.

[154]  N. Du,et al.  Porous Co3O4 Nanotubes Derived From Co4(CO)12 Clusters on Carbon Nanotube Templates: A Highly Efficient Material For Li‐Battery Applications , 2007 .

[155]  Byung-Kook Kim,et al.  Formation of lithium-driven active/inactive nanocomposite electrodes based on Ca3Co4O9 nanoplates. , 2007, Angewandte Chemie.

[156]  Justin D. Holmes,et al.  Mesoporous Titania Nanotubes: Their Preparation and Application as Electrode Materials for Rechargeable Lithium Batteries , 2007 .

[157]  Jun Chen,et al.  Nest‐like Silicon Nanospheres for High‐Capacity Lithium Storage , 2007 .

[158]  Jun Chen,et al.  Magnesium nanowires: enhanced kinetics for hydrogen absorption and desorption. , 2007, Journal of the American Chemical Society.

[159]  B. Chowdari,et al.  Nanophase ZnCo2O4 as a High Performance Anode Material for Li‐Ion Batteries , 2007 .

[160]  M. Fichtner,et al.  Synthesis and properties of magnesium tetrahydroborate, Mg(BH4)2 , 2007 .

[161]  Bruno Scrosati,et al.  High‐Rate, Long‐Life Ni–Sn Nanostructured Electrodes for Lithium‐Ion Batteries , 2007 .

[162]  Mark N. Obrovac,et al.  Reversible Cycling of Crystalline Silicon Powder , 2007 .

[163]  J. Tarascon,et al.  Towards a Fundamental Understanding of the Improved Electrochemical Performance of Silicon–Carbon Composites , 2007 .

[164]  A. Matzger,et al.  Porous crystal derived from a tricarboxylate linker with two distinct binding motifs. , 2007, Journal of the American Chemical Society.

[165]  P. Bénard,et al.  Storage of hydrogen by physisorption on carbon and nanostructured materials , 2007 .

[166]  Mircea Dincă,et al.  Observation of Cu2+-H2 interactions in a fully desolvated sodalite-type metal-organic framework. , 2007, Angewandte Chemie.

[167]  Robert Dominko,et al.  Improved Electrode Performance of Porous LiFePO4 Using RuO2 as an Oxidic Nanoscale Interconnect , 2007 .

[168]  Grace Ordaz,et al.  The U.S. Department of Energy's National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements , 2007 .

[169]  John B. Goodenough,et al.  Cathode materials: A personal perspective , 2007 .

[170]  Chang Liu,et al.  Improved hydrogen storage performance of Li–Mg–N–H materials by optimizing composition and adding single-walled carbon nanotubes , 2007 .

[171]  Hui-Ming Cheng,et al.  Functional anion concept: effect of fluorine anion on hydrogen storage of sodium alanate. , 2007, Physical chemistry chemical physics : PCCP.

[172]  Jaephil Cho,et al.  Reversible Lithium Intercalation in Teardrop‐Shaped Ultrafine SnP0.94 Particles: An Anode Material for Lithium‐Ion Batteries , 2007 .

[173]  Bruno Scrosati,et al.  Nanostructured Sn–C Composite as an Advanced Anode Material in High‐Performance Lithium‐Ion Batteries , 2007 .

[174]  C. Sow,et al.  α‐Fe2O3 Nanoflakes as an Anode Material for Li‐Ion Batteries , 2007 .

[175]  F. Béguin,et al.  The Large Electrochemical Capacitance of Microporous Doped Carbon Obtained by Using a Zeolite Template , 2007 .

[176]  Yangyang Shi,et al.  A Tin‐Based Amorphous Oxide Composite with a Porous, Spherical, Multideck‐Cage Morphology as a Highly Reversible Anode Material for Lithium‐Ion Batteries , 2007 .

[177]  G. Cui,et al.  A one-step approach towards carbon-encapsulated hollow tin nanoparticles and their application in lithium batteries. , 2007, Small.

[178]  Feng Li,et al.  Improved capacitance of SBA-15 templated mesoporous carbons after modification with nitric acid oxidation , 2007 .

[179]  E. Lust,et al.  Characterisation of activated nanoporous carbon for supercapacitor electrode materials , 2007 .

[180]  Xiaogang Zhang,et al.  Solid state synthesis of hydrous ruthenium oxide for supercapacitors , 2007 .

[181]  C. Wolverton,et al.  Destabilizing LiBH4 with a Metal (M = Mg, Al, Ti, V, Cr, or Sc) or Metal Hydride (MH2 = MgH2, TiH2, or CaH2) , 2007 .

[182]  Zhigao Zhang,et al.  Oxidation−Crystallization Process of Colloids: An Effective Approach for the Morphology Controllable Synthesis of SnO2 Hollow Spheres and Rod Bundles , 2007 .

[183]  Kathryn E. Toghill,et al.  A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. , 2007, Nature materials.

[184]  D. Zhao,et al.  Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor , 2007 .

[185]  Yong-Mook Kang,et al.  Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. , 2007, Angewandte Chemie.

[186]  Dong Wang,et al.  Hematite Hollow Spindles and Microspheres: Selective Synthesis, Growth Mechanisms, and Application in Lithium Ion Battery and Water Treatment , 2007 .

[187]  A. Züttel,et al.  Complex hydrides for hydrogen storage. , 2007, Chemical reviews.

[188]  Yu-Guo Guo,et al.  Superior Electrode Performance of Nanostructured Mesoporous TiO2 (Anatase) through Efficient Hierarchical Mixed Conducting Networks , 2007 .

[189]  J. Tarascon,et al.  Structural evolution during the reaction of Li with nano-sized rutile type TiO2 at room temperature , 2007 .

[190]  Christopher M Wolverton,et al.  First‐Principles Determination of Multicomponent Hydride Phase Diagrams: Application to the Li‐Mg‐N‐H System , 2007 .

[191]  Jonghee Han,et al.  A structured Co–B catalyst for hydrogen extraction from NaBH4 solution , 2007 .

[192]  R. Mokaya,et al.  Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. , 2007, Journal of the American Chemical Society.

[193]  Qinmin Pan,et al.  Natural graphite modified with nitrophenyl multilayers as anode materials for lithium ion batteries , 2007 .

[194]  H. Sohn,et al.  Black Phosphorus and its Composite for Lithium Rechargeable Batteries , 2007 .

[195]  J. Long,et al.  High-enthalpy hydrogen adsorption in cation-exchanged variants of the microporous metal-organic framework Mn3[(Mn4Cl)3(BTT)8(CH3OH)10]2. , 2007, Journal of the American Chemical Society.

[196]  Jeffrey W Long,et al.  Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. , 2007, Nano letters.

[197]  U. B. Demirci,et al.  Ru-based bimetallic alloys for hydrogen generation by hydrolysis of sodium tetrahydroborate , 2008 .

[198]  Guotao Wu,et al.  High-capacity hydrogen storage in lithium and sodium amidoboranes. , 2008, Nature materials.

[199]  G. Soloveichik,et al.  Ammine magnesium borohydride complex as a new material for hydrogen storage: structure and properties of Mg(BH4)2.2NH3. , 2008, Inorganic chemistry.

[200]  L. Archer,et al.  Self‐Supported Formation of Needlelike Co3O4 Nanotubes and Their Application as Lithium‐Ion Battery Electrodes , 2008 .

[201]  J. Long,et al.  Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. , 2008, Angewandte Chemie.

[202]  R. Schlögl,et al.  Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. , 2008, Angewandte Chemie.

[203]  M. Armand,et al.  Building better batteries , 2008, Nature.

[204]  G. Lu,et al.  Kinetic- and thermodynamic-based improvements of lithium borohydride incorporated into activated carbon , 2008 .

[205]  D. Deng,et al.  Hollow Core–Shell Mesospheres of Crystalline SnO2 Nanoparticle Aggregates for High Capacity Li+ Ion Storage , 2008 .

[206]  Tatsuya Kodama,et al.  High-temperature carbonate/MgO composite materials as thermal storage media for double-walled solar reformer tubes , 2008 .

[207]  Young-Su Lee,et al.  Reversible Hydrogen Storage in LiBH4−MH2 (M = Ce, Ca) Composites , 2008 .

[208]  Jin-Song Hu,et al.  Carbon Coated Fe3O4 Nanospindles as a Superior Anode Material for Lithium‐Ion Batteries , 2008 .

[209]  Hui‐Ming Cheng,et al.  Amorphous cobalt-boron/nickel foam as an effective catalyst for hydrogen generation from alkaline sodium borohydride solution , 2008 .

[210]  J. Bitter,et al.  Sodium alanate nanoparticles--linking size to hydrogen storage properties. , 2008, Journal of the American Chemical Society.

[211]  Chang Liu,et al.  Poly(vinyl chloride) (PVC) Coated Idea Revisited: Influence of Carbonization Procedures on PVC-Coated Natural Graphite as Anode Materials for Lithium Ion Batteries , 2008 .

[212]  Zhigang Chen,et al.  Synthesis and Electrochemical Property of Boron-Doped Mesoporous Carbon in Supercapacitor , 2008 .

[213]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[214]  R. Ruoff,et al.  Graphene-based ultracapacitors. , 2008, Nano letters.

[215]  John J. Vajo,et al.  Enhanced Hydrogen Storage Kinetics of LiBH4 in Nanoporous Carbon Scaffolds , 2008 .

[216]  Hui‐Ming Cheng,et al.  Improved Reversible Dehydrogenation of Lithium Borohydride by Milling with As-Prepared Single-Walled Carbon Nanotubes , 2008 .

[217]  Jin-Song Hu,et al.  Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices , 2008 .

[218]  Yi Cui,et al.  High capacity Li ion battery anodes using ge nanowires. , 2008, Nano letters.

[219]  Ying Wang,et al.  Developments in Nanostructured Cathode Materials for High‐Performance Lithium‐Ion Batteries , 2008 .

[220]  Bing Tan,et al.  Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. , 2008, Nano letters.

[221]  Anne C. Dillon,et al.  Reversible Lithium‐Ion Insertion in Molybdenum Oxide Nanoparticles , 2008 .

[222]  Kendall N Houk,et al.  Vacancy-mediated dehydrogenation of sodium alanate , 2008, Proceedings of the National Academy of Sciences.

[223]  Jaephil Cho,et al.  Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. , 2008, Angewandte Chemie.

[224]  Yongfeng Liu,et al.  Improvement of Hydrogen Storage Properties of the LiMgNH System by Addition of LiBH 4 , 2008 .

[225]  Yong Liu,et al.  Direct Growth of Flexible Carbon Nanotube Electrodes , 2008 .

[226]  Chunjoong Kim,et al.  Two‐Dimensional SnS2 Nanoplates with Extraordinary High Discharge Capacity for Lithium Ion Batteries , 2008 .

[227]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[228]  Hui‐Ming Cheng,et al.  Thermodynamically tuning LiBH4 by fluorine anion doping for hydrogen storage : A density functional study , 2008 .

[229]  Jun Liu,et al.  Synthesis and Li-Ion Insertion Properties of Highly Crystalline Mesoporous Rutile TiO2 , 2008 .

[230]  D. Su,et al.  CNFs@CNTs: Superior Carbon for Electrochemical Energy Storage , 2008 .

[231]  Bruno Scrosati,et al.  A Nanostructured Sn–C Composite Lithium Battery Electrode with Unique Stability and High Electrochemical Performance , 2008 .

[232]  Yong‐Mook Kang,et al.  The Effect of Morphological Modification on the Electrochemical Properties of SnO2 Nanomaterials , 2008 .

[233]  Urchin-Structured MWNTs/HCS Composite as Anode Material for High-Capacity and High-Power Lithium-Ion Batteries , 2008 .

[234]  Chang Liu,et al.  The facile synthesis of nickel silicide nanobelts and nanosheets and their application in electrochemical energy storage , 2008, Nanotechnology.

[235]  M. Trudeau,et al.  H2 storage materials (22 KJ/mol) using organometallic Ti fragments as sigma-H2 binding sites. , 2008, Journal of the American Chemical Society.

[236]  G. Lu,et al.  Mesopore-Aspect-Ratio Dependence of Ion Transport in Rodtype Ordered Mesoporous Carbon , 2008 .

[237]  R. T. Yang,et al.  New sorbents for hydrogen storage by hydrogen spillover – a review , 2008 .

[238]  Seok-Gwang Doo,et al.  Nitridation-driven conductive Li4Ti5O12 for lithium ion batteries. , 2008, Journal of the American Chemical Society.

[239]  Min Gyu Kim,et al.  Layered Li0.88[Li0.18Co0.33Mn0.49]O2 nanowires for fast and high capacity Li-Ion storage material. , 2008, Nano letters.

[240]  C. Grey,et al.  Molten Salt Synthesis and High Rate Performance of the “Desert‐Rose” form of LiCoO2 , 2008 .

[241]  Ping Wang,et al.  Hydrogen-rich boron-containing materials for hydrogen storage. , 2008, Dalton transactions.

[242]  Lai-Peng Ma,et al.  Effect of SWNTs on the reversible hydrogen storage properties of LiBH4-MgH2 composite , 2008 .

[243]  Zhennan Gu,et al.  Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. , 2008, Nano letters.

[244]  L. Archer,et al.  A General Route to Nonspherical Anatase TiO2 Hollow Colloids and Magnetic Multifunctional Particles , 2008 .

[245]  E. Yoo,et al.  Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. , 2008, Nano letters.

[246]  J. Tarascon,et al.  Metal hydrides for lithium-ion batteries. , 2008, Nature materials.

[247]  Haoshen Zhou,et al.  The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. , 2008, Angewandte Chemie.

[248]  Adriano Zecchina,et al.  Role of exposed metal sites in hydrogen storage in MOFs. , 2008, Journal of the American Chemical Society.

[249]  Hyun-Wook Lee,et al.  Spinel LiMn2O4 nanorods as lithium ion battery cathodes. , 2008, Nano letters.

[250]  Jaephil Cho,et al.  Superior lithium electroactive mesoporous Si@carbon core-shell nanowires for lithium battery anode material. , 2008, Nano letters.

[251]  U. Kolb,et al.  Precursor‐Controlled Formation of Novel Carbon/Metal and Carbon/Metal Oxide Nanocomposites , 2008 .

[252]  J. Graetz,et al.  Regeneration of lithium aluminum hydride. , 2008, Journal of the American Chemical Society.

[253]  Juan Bisquert,et al.  High carrier density and capacitance in TiO2 nanotube arrays induced by electrochemical doping. , 2008, Journal of the American Chemical Society.

[254]  Jaephil Cho,et al.  Template Synthesis of Hollow Sb Nanoparticles as a High-Performance Lithium Battery Anode Material , 2008 .

[255]  Yan Li,et al.  Synthesis of Li2NH Hollow Nanospheres with Superior Hydrogen Storage Kinetics by Plasma Metal Reaction , 2008 .

[256]  Yan Liang,et al.  Catalytically Enhanced Hydrogen Storage Properties of Mg(NH2)2 + 2LiH Material by Graphite-Supported Ru Nanoparticles , 2008 .

[257]  Hao Zhang,et al.  Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability , 2008 .

[258]  E. Stefanakos,et al.  Effects of catalysts doping on the thermal decomposition behavior of Zn(BH4)2 , 2008 .

[259]  G. Lu,et al.  3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. , 2008, Angewandte Chemie.

[260]  S. C. Solanki,et al.  Heat transfer characteristics of thermal energy storage system using PCM capsules: A review , 2008 .

[261]  P. Taberna,et al.  Relation between the ion size and pore size for an electric double-layer capacitor. , 2008, Journal of the American Chemical Society.

[262]  P. Bruce,et al.  Synthesis of ordered mesoporous Li-Mn-O spinel as a positive electrode for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[263]  G. Lu,et al.  Ammonia Borane Destabilized by Lithium Hydride: An Advanced On‐Board Hydrogen Storage Material , 2008, Advanced materials.

[264]  Christopher Wolverton,et al.  A self-catalyzing hydrogen-storage material. , 2008, Angewandte Chemie.

[265]  Hao Zhang,et al.  Comparison Between Electrochemical Properties of Aligned Carbon Nanotube Array and Entangled Carbon Nanotube Electrodes , 2008 .

[266]  Feng Li,et al.  Aligned Titania Nanotubes as an Intercalation Anode Material for Hybrid Electrochemical Energy Storage , 2008 .

[267]  L. Archer,et al.  Hollow Micro‐/Nanostructures: Synthesis and Applications , 2008 .

[268]  Pierre-Louis Taberna,et al.  Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory. , 2008, Angewandte Chemie.

[269]  Jun Chen,et al.  Combination of lightweight elements and nanostructured materials for batteries. , 2009, Accounts of Chemical Research.

[270]  Improving the Hydrogen Reaction Kinetics of Complex Hydrides , 2009 .

[271]  H. Kwon,et al.  Gram‐Scale Synthesis of Cu2O Nanocubes and Subsequent Oxidation to CuO Hollow Nanostructures for Lithium‐Ion Battery Anode Materials , 2009 .

[272]  Zaiping Guo,et al.  Ultra-fine porous SnO2 nanopowder prepared via a molten salt process: a highly efficient anode material for lithium-ion batteries , 2009 .

[273]  Itaru Honma,et al.  Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. , 2009, Nano letters.

[274]  Xujie Yang,et al.  Graphene oxide doped polyaniline for supercapacitors , 2009 .

[275]  A. Sharma,et al.  Review on thermal energy storage with phase change materials and applications , 2009 .

[276]  G. Lu,et al.  Highly stable performance of supercapacitors from phosphorus-enriched carbons. , 2009, Journal of the American Chemical Society.

[277]  Yan Liang,et al.  Enhanced Hydrogen Storage Properties of Li−Mg−N−H System Prepared by Reacting Mg(NH2)2 with Li3N , 2009 .

[278]  G. Lu,et al.  Layer-by-layer assembly and electrochemical properties of sandwiched film of manganese oxide nanosheet and carbon nanotube , 2009 .

[279]  E. Yoo,et al.  Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. , 2009, Nano letters.

[280]  T. Hoang,et al.  Exploiting the Kubas Interaction in the Design of Hydrogen Storage Materials , 2009 .

[281]  Karim Zaghib,et al.  Unsupported claims of ultrafast charging of LiFePO4 Li-ion batteries , 2009 .

[282]  P. Chupas,et al.  Determination of structure and phase transition of light element nanocomposites in mesoporous silica: case study of NH3BH3 in MCM-41. , 2009, Journal of the American Chemical Society.

[283]  B. Dunn,et al.  Templated nanocrystal-based porous TiO(2) films for next-generation electrochemical capacitors. , 2009, Journal of the American Chemical Society.

[284]  Moritz F. Kuehnel,et al.  Hydrazine borane: a promising hydrogen storage material. , 2009, Journal of the American Chemical Society.

[285]  K. Kanamura,et al.  Incorporation of polyaniline into macropores of three-dimensionally ordered macroporous carbon electrode for electrochemical capacitors , 2009 .

[286]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[287]  Zhen Zhou,et al.  Improved high-rate charge/discharge performances of LiFePO4/C via V-doping , 2009 .

[288]  U. Jeng,et al.  Nanostructure and hydrogen spillover of bridged metal-organic frameworks. , 2009, Journal of the American Chemical Society.

[289]  Hui-Ming Cheng,et al.  In situ formation and rapid decomposition of Ti(BH4)3 by mechanical milling LiBH4 with TiF3 , 2009 .

[290]  Yet-Ming Chiang,et al.  Aliovalent Substitutions in Olivine Lithium Iron Phosphate and Impact on Structure and Properties , 2009 .

[291]  Yan‐Bing He,et al.  Low-temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage. , 2009, ACS nano.

[292]  D. Su,et al.  Synthesis and electrode performance of nanostructured V2O5 by using a carbon tube-in-tube as a nanoreactor and an efficient mixed-conducting network. , 2009, Angewandte Chemie.

[293]  Henrietta W. Langmi,et al.  Facile cycling of Ti-doped LiAlH4 for high performance hydrogen storage. , 2009, Journal of the American Chemical Society.

[294]  Joachim Maier,et al.  Lithium Storage in Carbon Nanostructures , 2009, Advanced materials.

[295]  R. Zidan,et al.  Aluminium hydride: a reversible material for hydrogen storage. , 2009, Chemical communications.

[296]  R. Ahuja,et al.  Potassium-modified Mg(NH2)2/2 LiH system for hydrogen storage. , 2009, Angewandte Chemie.

[297]  Ilias Belharouak,et al.  High-energy cathode material for long-life and safe lithium batteries. , 2009, Nature materials.

[298]  Yun Jung Lee,et al.  Fabricating Genetically Engineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes , 2009, Science.

[299]  D. Deng,et al.  Reversible storage of lithium in a rambutan-like tin-carbon electrode. , 2009, Angewandte Chemie.

[300]  Andreas Blomqvist,et al.  Carbon nanomaterials as catalysts for hydrogen uptake and release in NaAlH4. , 2009, Nano letters.

[301]  M. Armand,et al.  Conjugated dicarboxylate anodes for Li-ion batteries. , 2009, Nature materials.

[302]  Qingfeng Liu,et al.  In situ assembly of multi-sheeted buckybooks from single-walled carbon nanotubes. , 2009, ACS nano.

[303]  Min Gyu Kim,et al.  Highly Reversible Li-Ion Intercalating MoP2 Nanoparticle Cluster Anode for Lithium Rechargeable Batteries , 2009 .

[304]  Lai-Peng Ma,et al.  Superior catalytic effect of TiF3 over TiCl3 in improving the hydrogen sorption kinetics of MgH2: Catalytic role of fluorine anion , 2009 .

[305]  Candace K. Chan,et al.  Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. , 2009, Nano letters.

[306]  J. Tour,et al.  Nanoengineered carbon scaffolds for hydrogen storage. , 2009, Journal of the American Chemical Society.

[307]  Jaephil Cho,et al.  Effect of LiCoO2 Cathode Nanoparticle Size on High Rate Performance for Li-Ion Batteries , 2009 .

[308]  Xiangwu Zhang,et al.  Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries , 2009, Nanotechnology.

[309]  D. Mori,et al.  Recent challenges of hydrogen storage technologies for fuel cell vehicles , 2009 .

[310]  Arava Leela Mohana Reddy,et al.  Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. , 2009, Nano letters.

[311]  Xiaogang Zhang,et al.  Synthesis and utilization of RuO2·xH2O nanodots well dispersed on poly(sodium 4-styrene sulfonate) functionalized multi-walled carbon nanotubes for supercapacitors , 2009 .

[312]  G. Sumanasekera,et al.  Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries. , 2009, Nano letters.

[313]  Min Liu,et al.  Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays , 2009, Nanotechnology.

[314]  Haisheng Chen,et al.  Progress in electrical energy storage system: A critical review , 2009 .

[315]  G. Lu,et al.  Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode. , 2009, ACS nano.

[316]  J. Bacsa,et al.  Magnesium borohydride confined in a metal-organic framework: a preorganized system for facile arene hydroboration. , 2009, Angewandte Chemie.