Robust nonlinear model predictive control of batch processes

NMPC explicitly addresses constraints and nonlinearities during the feedback control of batch processes. This NMPC algorithm also explicitly takes parameter uncertainty into account in the state estimation and state feedback controller designs. An extended Kalman filter estimates the process noise covariance matrix from the parameter uncertainty description and employs a sequential integration and correction strategy to reduce biases in the state estimates due to parameter uncertainty. The shrinking horizon NMPC algorithm minimizes a weighted sum of the nominal performance objective, an estimate of the variance of the performance objective, and an integral of the deviation of the control trajectory from the nominal optimal control trajectory. The robust performance is quantified by estimates of the distribution of the performance index along the batch run obtained by a series expansion about the control trajectory. The control and analysis approaches are applied to a simulated batch crystallization process with a realistic uncertainty description. The proposed robust NMPC algorithm improves the robust performance by a factor of six compared to open loop optimal control, and a factor of two compared to nominal NMPC. Monte Carlo simulations support the results obtained by the distributional robustness analysis technique.

[1]  S. Katz,et al.  Some problems in particle technology: A statistical mechanical formulation , 1964 .

[2]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[3]  James V. Beck,et al.  Parameter Estimation in Engineering and Science , 1977 .

[4]  G. Siouris,et al.  Optimum systems control , 1979, Proceedings of the IEEE.

[5]  C. R. Cutler,et al.  Dynamic matrix control¿A computer control algorithm , 1979 .

[6]  David W.T. Rippin,et al.  Simulation of single- and multiproduct batch chemical plants for optimal design and operation☆ , 1983 .

[7]  W. E. Stewart,et al.  Sensitivity analysis of initial value problems with mixed odes and algebraic equations , 1985 .

[8]  J. Rawlings,et al.  Model-predictive control and sensitivity analysis for constrained nonlinear processes , 1988 .

[9]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..

[10]  J. Rawlings,et al.  Feedback control of chemical processes using on-line optimization techniques , 1990 .

[11]  B. Bequette Nonlinear control of chemical processes: a review , 1991 .

[12]  Lorenz T. Biegler,et al.  Optimization approaches to nonlinear model predictive control , 1991 .

[13]  J. Rawlings,et al.  Model identification and control of solution crystallization processes: a review , 1993 .

[14]  Emad Ali,et al.  Optimization-based Tuning of Nonlinear Model Predictive Control with State Estimation , 1993 .

[15]  Jay H. Lee,et al.  Extended Kalman Filter Based Nonlinear Model Predictive Control , 1993, 1993 American Control Conference.

[16]  J. Rawlings,et al.  The stability of constrained receding horizon control , 1993, IEEE Trans. Autom. Control..

[17]  James B. Rawlings,et al.  Model identification and control strategies for batch cooling crystallizers , 1994 .

[18]  Jay H. Lee,et al.  Tuning of model predictive controllers for robust performance , 1994 .

[19]  Mukul Agarwal,et al.  Batch unit optimization with imperfect modelling: a survey , 1994 .

[20]  Babu Joseph,et al.  Shrinking horizon model predictive control applied to autoclave curing of composite laminate materials , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[21]  P. I. Barton,et al.  Efficient sensitivity analysis of large-scale differential-algebraic systems , 1997 .

[22]  T. Badgwell Robust model predictive control of stable linear systems , 1997 .

[23]  Thomas A. Badgwell,et al.  Robust Stability Conditions for SISO Model Predictive Control Algorithms , 1997, Autom..

[24]  D. Mayne,et al.  Min-max feedback model predictive control for constrained linear systems , 1998, IEEE Trans. Autom. Control..

[25]  Y. Arkun,et al.  Estimation and model predictive control of non-linear batch processes using linear parameter varying models , 1999 .

[26]  Hyun-Ku Rhee,et al.  Extended Kalman filter-based nonlinear model predictive control for a continuous MMA polymerization reactor , 1999 .

[27]  David L. Ma,et al.  Worst‐case performance analysis of optimal batch control trajectories , 1999 .

[28]  J. Valappil,et al.  A systematic tuning approach for the use of extended Kalman filters in batch processes , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[29]  Stephen J. Wright,et al.  Nonlinear Predictive Control and Moving Horizon Estimation — An Introductory Overview , 1999 .

[30]  M. Alamir,et al.  Robust constrained control algorithm for general batch processes , 1999 .

[31]  Michel Cabassud,et al.  Modeling, Optimization and Control of Batch Chemical Reactors in Fine Chemical Production , 1999 .

[32]  S. H. Chung,et al.  Worst-case performance analysis of optimal batch control trajectories , 1999, 1999 European Control Conference (ECC).

[33]  D. L. Ma,et al.  Optimal model-based experimental design in batch crystallization , 2000 .

[34]  S. Palanki,et al.  A feedback-based implementation scheme for batch process optimization , 2000 .

[35]  Jaleel Valappil,et al.  Systematic estimation of state noise statistics for extended Kalman filters , 2000 .

[36]  Lorenz T. Biegler,et al.  Efficient Solution of Dynamic Optimization and NMPC Problems , 2000 .

[37]  Richard D. Braatz,et al.  Robust batch control of crystallization processes , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[38]  David Q. Mayne,et al.  Nonlinear Model Predictive Control:Challenges and Opportunities , 2000 .

[39]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[40]  Leo H. Chiang,et al.  Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis , 2000 .

[41]  S. Joe Qin,et al.  An Overview of Nonlinear Model Predictive Control Applications , 2000 .

[42]  James B. Rawlings,et al.  Crystallization of para‐xylene in scraped‐surface crystallizers , 2001 .

[43]  Wang Yang,et al.  Industrial application of a nonlinear model predictive control to polymerization reactors , 2001 .

[44]  Christos Georgakis,et al.  State estimation and nonlinear model predictive control of end-use properties in batch reactors , 2002, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[45]  David L. Ma,et al.  Worst-case analysis of finite-time control policies , 2001, IEEE Trans. Control. Syst. Technol..

[46]  James B. Rawlings,et al.  Particle-shape monitoring and control in crystallization processes , 2001 .

[47]  Richard D. Braatz,et al.  Advanced control of crystallization processes , 2002, Annu. Rev. Control..

[48]  David L. Ma,et al.  IDENTIFICATION OF PHARMACEUTICAL CRYSTALLIZATION PROCESSES , 2002 .

[49]  R. Braatz,et al.  Particle Size and Shape Control in Crystallization Processes , 2002 .