Achieved good mechanical properties and large elastocaloric effect in Ni-Mn-Ti-Cu-B alloy: Experiments and first-principles calculations

[1]  Guangheng Wu,et al.  d-d hybridization controlled large-volume-change martensitic phase transition in Ni-Mn-Ti-based all-d-metal Heusler compounds , 2022, Journal of Alloys and Compounds.

[2]  L. Molina‐Luna,et al.  Microstructure engineering of metamagnetic Ni-Mn-based Heusler compounds by Fe-doping: A roadmap towards excellent cyclic stability combined with large elastocaloric and magnetocaloric effects , 2021, Acta Materialia.

[3]  L. Zuo,et al.  Giant low-field actuated caloric effects in a textured Ni43Mn47Sn10 alloy , 2021 .

[4]  C. Esling,et al.  First-principles investigation of B2 partial disordered structure, martensitic transformation, elastic and magnetic properties of all-d-metal Ni-Mn-Ti Heusler alloys , 2021 .

[5]  L. Zuo,et al.  Large elastocaloric effect in a Heusler-type Co50V35Ga14Ni1 polycrystalline alloy , 2021 .

[6]  L. Geng,et al.  Elastocaloric effect in bamboo-grained Cu71.1Al17.2Mn11.7 microwires , 2021 .

[7]  C. Esling,et al.  Excellent mechanical properties and large magnetocaloric effect of spark plasma sintered Ni-Mn-In-Co alloy , 2020 .

[8]  C. Esling,et al.  A multielement alloying strategy to improve elastocaloric and mechanical properties in Ni–Mn-based alloys via copper and boron , 2020 .

[9]  Jia-Jyun Shen,et al.  Mechanical and elastocaloric effect of aged Ni-rich TiNi shape memory alloy under load-controlled deformation , 2020 .

[10]  Jian Liu,et al.  Large elastocaloric effect in directionally solidified all-d-metal Heusler metamagnetic shape memory alloys , 2020 .

[11]  Xi Li,et al.  Giant elastocaloric effect in a Mn-rich Ni44Mn46Sn10 directionally solidified alloy , 2020 .

[12]  C. Esling,et al.  Giant elastocaloric effect and exceptional mechanical properties in an all-d-metal Ni–Mn–Ti alloy: Experimental and ab-initio studies , 2019 .

[13]  C. Esling,et al.  Correlation between microstructure and martensitic transformation, mechanical properties and elastocaloric effect in Ni–Mn-based alloys , 2019, Intermetallics.

[14]  Youwei Du,et al.  Enhanced elastocaloric effect and mechanical properties of Fe-doped Ni–Mn–Al ferromagnetic shape memory alloys , 2019, Intermetallics.

[15]  Lin Zhou,et al.  Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing , 2019, Science.

[16]  Xi Li,et al.  Influence of austenite ferromagnetism on the elastocaloric effect in a Ni44.9Co4.9Mn36.9In13.3 metamagnetic shape memory alloy , 2019, Applied Physics Letters.

[17]  X. Moya,et al.  Giant and Reversible Inverse Barocaloric Effects near Room Temperature in Ferromagnetic MnCoGeB0.03 , 2019, Advanced materials.

[18]  L. Geng,et al.  Hot extrusion approach to enhance the cyclic stability of elastocaloric effect in polycrystalline Ni-Mn-Ga alloys , 2019, Scripta Materialia.

[19]  L. Mañosa,et al.  Colossal Elastocaloric Effect in Ferroelastic Ni-Mn-Ti Alloys. , 2019, Physical review letters.

[20]  Wei Sun,et al.  Orientation dependent elastocaloric effect in directionally solidified Ni-Mn-Sn alloys , 2019, Scripta Materialia.

[21]  Y. Shen,et al.  Elastocaloric effect of all-d-metal Heusler NiMnTi(Co) magnetic shape memory alloys by digital image correlation and infrared thermography , 2019, Applied Physics Letters.

[22]  Subhradip Ghosh,et al.  Role of composition, site ordering, and magnetic structure for the structural stability of off-stoichiometric Ni2MnSb alloys with excess Ni and Mn , 2019, Physical Review B.

[23]  Pan Wang,et al.  Enhanced elastocaloric effect and cycle stability in B and Cu co-doping Ni-Mn-In polycrystals , 2019, Applied Physics Letters.

[24]  Yuan Yuan,et al.  Ultrahigh cyclability of a large elastocaloric effect in multiferroic phase-transforming materials , 2019, Materials Research Letters.

[25]  Wen-ru Sun,et al.  Influence of Cr on microstructure and elastocaloric effect in Ni–Mn–In–Co–Cr polycrystalline alloys , 2018, Physics Letters A.

[26]  Yang Ren,et al.  Simultaneously achieved large reversible elastocaloric and magnetocaloric effects and their coupling in a magnetic shape memory alloy , 2018 .

[27]  W. Cai,et al.  Simultaneous tuning of martensitic transformation behavior, magnetic and mechanical properties in Ni–Mn–Sn magnetic alloy by Cu doping , 2018 .

[28]  L. Geng,et al.  Orientation dependent cyclic stability of the elastocaloric effect in textured Ni-Mn-Ga alloys , 2018 .

[29]  Jian Liu,et al.  Combined caloric effects in a multiferroic Ni–Mn–Ga alloy with broad refrigeration temperature region , 2017 .

[30]  Yandong Wang,et al.  Enhanced cyclability of elastocaloric effect in boron-microalloyed Ni-Mn-In magnetic shape memory alloys , 2017 .

[31]  Chengbao Jiang,et al.  Large room-temperature elastocaloric effect of Ni57Mn18Ga21In4 alloy undergoing a magnetostructural coupling transition , 2017 .

[32]  Yan Feng,et al.  Giant elastocaloric effect and its irreversibility in [001]-oriented Ni45Mn36.5In13.5Co5 meta-magnetic shape memory alloys , 2017 .

[33]  A. Chakrabarti,et al.  Probing the possibility of coexistence of martensite transition and half-metallicity in Ni and Co-based full Heusler Alloys : An ab initio Calculation , 2016, 1603.09112.

[34]  A. Ahadi,et al.  Grain size dependence of fracture toughness and crack-growth resistance of superelastic NiTi , 2016 .

[35]  Jian Liu,et al.  Elastocaloric effect in Ni50Fe19Ga27Co4 single crystals , 2015 .

[36]  I. Karaman,et al.  Giant elastocaloric effect in directionally solidified Ni-Mn-In magnetic shape memory alloy , 2015 .

[37]  Jian Liu,et al.  Elastocaloric effect in Ni45Mn36.4In13.6Co5 metamagnetic shape memory alloys under mechanical cycling , 2015 .

[38]  Nini Pryds,et al.  Elastocaloric effect of Ni-Ti wire for application in a cooling device , 2015 .

[39]  X. Moya,et al.  Caloric materials near ferroic phase transitions. , 2014, Nature materials.

[40]  L. Mañosa,et al.  Large temperature span and giant refrigerant capacity in elastocaloric Cu-Zn-Al shape memory alloys , 2013 .

[41]  M. Acet,et al.  Inverse barocaloric effect in the giant magnetocaloric La-Fe-Si-Co compound. , 2011, Nature communications.

[42]  Subhradip Ghosh,et al.  First-principles investigations of the electronic structure and properties related to shape-memory behavior in Mn2NiX (X = Al,Ga,In,Sn) alloys , 2011 .

[43]  Y. Kaneno,et al.  Alloying Behavior of Ni3Nb, Ni3V and Ni3Ti Compounds , 2010 .

[44]  Mehmet Acet,et al.  Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. , 2010, Nature materials.

[45]  Yan Feng,et al.  Investigation on martensitic transformation behavior, microstructures and mechanical properties of Fe-doped Ni–Mn–In alloys , 2009 .

[46]  L. Mañosa,et al.  Acoustic emission and energy dissipation during front propagation in a stress-driven martensitic transition , 2008 .

[47]  K. Ishida,et al.  Magnetic field-induced reverse transformation in B2-type NiCoMnAl shape memory alloys , 2008 .

[48]  A. Inoue Stabilization of metallic supercooled liquid and bulk amorphous alloys , 2000 .

[49]  Georg Kresse,et al.  Ab initio calculation of the lattice dynamics and phase diagram of boron nitride , 1999 .

[50]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[51]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[52]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[53]  S. Pugh XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .

[54]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .