Modeling and simulation methodology for impact microactuators

Micro or nano distance manipulations are of prime importance in the MEMS industry. Microdevices are ideal for micropositioning systems due to their small size. Microactuators used to produce small displacements would need large actuation forces and a long driving distance. This would require large voltages to produce the desired forces. Actuators based on impulsive forces provide a solution to this problem. Many impact microactuators have been designed and fabricated in the past decade. Impacts are a source of nonlinearity and a careful study of the dynamics is essential in order to ensure consistent performance of the device. Currently, the state of the art lacks a robust design tool for such devices. The primary goal of this paper is to present a comprehensive modeling and simulation methodology for impact microactuators. The present study will aid in a more robust and consistent impact microactuator design.

[1]  Hiroyuki Fujita,et al.  A micromachined impact microactuator driven by electrostatic force , 2003 .

[2]  M. Kurosawa,et al.  A smooth impact rotation motor using a multi-layered torsional piezoelectric actuator , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[3]  D. Collard,et al.  Electrostatic impact-drive microactuator , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[4]  Toshiro Higuchi,et al.  Application of Electromagnetic Impulsive Force to Precise Positioning , 1987 .

[5]  T. Higuchi,et al.  Precision positioning device utilizing impact force of combined piezo-pneumatic actuator , 2001 .

[6]  Ali H. Nayfeh,et al.  Bifurcations and Chaotic Dynamics in an Electrostatically Actuated Impact Microactuator: A Numerical Exploration , 2003 .

[7]  Bernhard E. Boser,et al.  Charge control of parallel-plate, electrostatic actuators and the tip-in instability , 2003 .

[8]  H. Dankowicz,et al.  On the origin and bifurcations of stick-slip oscillations , 2000 .

[9]  A. Nayfeh,et al.  Applied nonlinear dynamics : analytical, computational, and experimental methods , 1995 .

[10]  T. Y. Ng,et al.  Optimization of a piezoelectric ceramic actuator , 2000 .

[11]  H. J. Mamin,et al.  Micromechanical structures for data storage , 1995 .

[12]  Ali H. Nayfeh,et al.  Nonlinear Dynamics of an Electrically Driven Impact Microactuator , 2005 .

[13]  Steven R. Bishop,et al.  Bifurcations in impact oscillations , 1994 .

[14]  A. Nayfeh,et al.  Applied nonlinear dynamics : analytical, computational, and experimental methods , 1995 .

[15]  J. Molenaar,et al.  Mappings of grazing-impact oscillators , 2001 .

[16]  Kazuhiro Saitou,et al.  Externally resonated linear microvibromotor for microassembly , 2000, Journal of Microelectromechanical Systems.

[17]  T. Higuchi,et al.  Micro impact drive mechanisms using optically excited thermal expansion , 1997 .

[18]  Harry Dankowicz,et al.  Local analysis of co-dimension-one and co-dimension-two grazing bifurcations in impact microactuators , 2005 .

[19]  Grebogi,et al.  Grazing bifurcations in impact oscillators. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  A. Nordmark Universal limit mapping in grazing bifurcations , 1997 .

[21]  R. Leine,et al.  Bifurcations in Nonlinear Discontinuous Systems , 2000 .

[22]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[23]  Satoshi Konishi,et al.  Compact and precise positioner based on the Inchworm principle , 2000 .

[24]  T. Higuchi,et al.  Precise positioning mechanism utilizing rapid deformations of piezoelectric elements , 1990, IEEE Proceedings on Micro Electro Mechanical Systems, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots..

[25]  Jean-Marc Breguet,et al.  Stick and slip actuators: design, control, performances and applications , 1998, MHA'98. Proceedings of the 1998 International Symposium on Micromechatronics and Human Science. - Creation of New Industry - (Cat. No.98TH8388).

[26]  Reymond Clavel,et al.  Micropositioners for microscopy applications based on the stick-slip effect , 2000, MHS2000. Proceedings of 2000 International Symposium on Micromechatronics and Human Science (Cat. No.00TH8530).

[27]  Helmut F. Schlaak,et al.  Miniaturised micro-positioning system for large displacements and large forces based on an inchworm platform , 2002 .

[28]  A. Nordmark,et al.  Bifurcations caused by grazing incidence in many degrees of freedom impact oscillators , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[29]  Steven W. Shaw,et al.  The Dynamics of a Harmonically Excited System Having Rigid Amplitude Constraints, Part 2: Chaotic Motions and Global Bifurcations , 1985 .

[30]  Ronald S. Fearing,et al.  Survey of sticking effects for micro parts handling , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[31]  Werner Schiehlen,et al.  Local and global stability of a piecewise linear oscillator , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[32]  Arne Nordmark,et al.  Existence of periodic orbits in grazing bifurcations of impacting mechanical oscillators , 2001 .

[33]  Robert Amantea,et al.  Resistive damping of pulse-sensed capacitive position sensors , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[34]  R. Muller,et al.  Linear microvibromotor for positioning optical components , 1995 .

[35]  P. Holmes,et al.  A periodically forced piecewise linear oscillator , 1983 .

[36]  Yong-Kweon Kim,et al.  Micro XY-stage using silicon on a glass substrate , 2002 .