Equation of state and strength of natural majorite

The bulk modulus of a natural sample of cubic majorite, one of the primary components of the Earth's transition zone, has been determined by two independent methods: quasi-hydrostatic compression in the diamond anvil cell and Brillouin spectroscopy at room pressure. The two measurements agree well, and together yield a zero-pressure isothermal bulk modulus KOT = 162.7 (±3.3) GPa, and a pressure derivative KOT = 6.6 (±0.8). Additional compression experiments under nonhydrostatic conditions show that majorite supports shear stresses of at least 2 to 3 GPa at pressures of 7–11 GPa, among the highest values yet documented in silicates or oxides at comparable pressures. These results imply a high strength for majorite, suggesting that the transition zone could be strong to a degree that may influence deformation and heat transfer within the Earth.

[1]  Lin‐gun Liu The system enstatite-pyrope at high pressures and temperatures and the mineralogy of the earth's mantle , 1977 .

[2]  Ashutosh Kumar Singh,et al.  The lattice strains in a specimen (cubic system) compressed nonhydrostatically in an opposed anvil device , 1993 .

[3]  L. Coleman Ringwoodite and majorite in the Catherwood meteorite , 1977 .

[4]  H. Mao,et al.  Single-crystal elasticity of β-Mg2SiO4 to the pressure of the 410 km seismic discontinuity in the Earth's mantle , 1997 .

[5]  D. L. Anderson Theory of Earth , 2014 .

[6]  Peter M. Bell,et al.  The Equation of State of Dense Argon; A Comparison of Shock and Static Studies , 1986 .

[7]  D. Helmberger,et al.  Upper mantle shear structure of North America , 1984 .

[8]  R. Jeanloz,et al.  Static strength and equation of state of rhenium at ultra-high pressures , 1991, Nature.

[9]  S. Karato,et al.  Plastic deformation of garnets: systematics and implications for the rheology of the mantle transition zone , 1995 .

[10]  L. Stixrude,et al.  Petrology, elasticity, and composition of the mantle transition zone , 1992 .

[11]  J. Bass Elasticity of grossular and spessartite garnets by Brillouin spectroscopy , 1989 .

[12]  F. Birch Elasticity and Constitution of the Earth's Interior , 1952 .

[13]  R C DeVries,et al.  Absolute pressure measurements and analysis of diamonds subjected to maximum static pressures of 1.3-1.7 Mbar. , 1979, The Review of scientific instruments.

[14]  R. Jeanloz,et al.  The strength of mantle silicates at high pressures and room temperature: implications for the viscosity of the mantle , 1990, Nature.

[15]  S. Karato On the separation of crustal component from subducted oceanic lithosphere near the 660 KM discontinuity , 1997 .

[16]  H. Mao,et al.  X-ray Imaging of Stress and Strain of Diamond, Iron, and Tungsten at Megabar Pressures , 1997 .

[17]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[18]  S. Akimoto,et al.  Pyroxene-garnet solid-solution equilibria in the systems Mg4Si4O12Mg3Al2Si3O12 and Fe4Si4O12Fe3Al2Si3O12 at high pressures and temperatures , 1977 .

[19]  E. Knittle,et al.  The stability and equation of state of majoritic garnet synthesized from natural basalt at mantle conditions , 1996 .

[20]  Raymond Jeanloz,et al.  The equation of state of the gold calibration standard , 1984 .

[21]  A. Singh,et al.  Uniaxial stress component in diamond anvil high-pressure x-ray cameras , 1977 .

[22]  J. W. Shaner,et al.  Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar , 1978 .

[23]  D. Weidner,et al.  Elasticity of majorite, MgSiO3 tetragonal garnet , 1997 .

[24]  Raymond Jeanloz,et al.  Majorite: Vibrational and compressional properties of a high‐pressure phase , 1981 .

[25]  T. Yagi,et al.  Isothermal compression curve of MgSiO3 tetragonal garnet , 1992 .

[26]  T. Yagi,et al.  Deviatoric stress measurement under uniaxial compression by a powder x‐ray diffraction method , 1994 .

[27]  S. Sinogeikin,et al.  Elasticity of tetragonal end-member majorite and solid solutions in the system Mg4Si4O12-Mg3Al2Si3O12 , 1997 .

[28]  R. Liebermann,et al.  Elastic wave velocities of a pyrope-majorite garnet to 3 GPa , 1994 .

[29]  J. Bass,et al.  Elasticity of a majorite‐pyrope solid solution , 1990 .

[30]  D. Yuen,et al.  Dynamical consequences of mid‐mantle viscosity stratification on mantle flows with an endothermic phase transition , 1997 .

[31]  R. Jeanloz,et al.  Elasticity of natural majorite and ringwoodite from the catherwood meteorite , 1997 .

[32]  D. L. Anderson,et al.  Seismic velocities in mantle minerals and the mineralogy of the upper mantle , 1989 .

[33]  B. Mason,et al.  Pyroxene-Garnet Transformation in Coorara Meteorite , 1970, Science.

[34]  A. C. Lees,et al.  Reflection properties of phase transition and compositional change models of the 670‐km discontinuity , 1983 .

[35]  S. Block,et al.  Viscosity measurements in the diamond anvil pressure cell. , 1978, The Review of scientific instruments.

[36]  P. Conrad,et al.  Comparative compressibilities of majorite-type garnets , 1994 .

[37]  Don L. Anderson,et al.  Composition of the upper mantle: Geophysical tests of two petrological models , 1984 .

[38]  D. Weidner,et al.  Yield strength at high pressure and temperature , 1994 .

[39]  R. Jeanloz,et al.  A computer program to analyze x‐ray diffraction films , 1993 .

[40]  J. Nelen,et al.  Olivine-Garnet Transformation in a Meteorite , 1968, Science.

[41]  T. Yagi,et al.  Lattice strains in crystals under uniaxial stress field , 1996 .

[42]  R. Kind,et al.  The Nature of the 660-Kilometer Upper-Mantle Seismic Discontinuity from Precursors to the PP Phase , 1996, Science.

[43]  Duffy,et al.  Equation of state and shear strength at multimegabar pressures: Magnesium oxide to 227 GPa. , 1995, Physical review letters.

[44]  F. Birch,et al.  Finite strain isotherm and velocities for single‐crystal and polycrystalline NaCl at high pressures and 300°K , 1978 .

[45]  Broadening of x-ray powder diffraction lines under nonhydrostatic stress , 1997 .