Fast and Slow Dynamics for the Computational Singular Perturbation Method

The computational singular perturbation (CSP) method ofLam and Goussis is an iterative method to reduce the dimensionality of systems of ordinary differential equations with multiple time scales. In [J. Nonlinear Sci., 14 (2004), pp. 59--91], the authors of this paper showed that each iteration of the CSP algorithm improves the approximation of the slow manifold by one order. In this paper, it is shown that the CSP method simultaneously approximates the tangent spaces to the fast fibers along which solutions relax to the slow manifold. Again, each iteration adds one order of accuracy. In some studies, the output of the CSP algorithm is postprocessed by linearly projecting initial data onto the slow manifold along these approximate tangent spaces. These projections, in turn, also become successively more accurate.

[1]  B. Dubrovin,et al.  Modern geometry--methods and applications , 1984 .

[2]  Alexander N Gorban,et al.  North-Holland Thermodynamic parameterization , 1992 .

[3]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[4]  A. Fordy APPLICATIONS OF LIE GROUPS TO DIFFERENTIAL EQUATIONS (Graduate Texts in Mathematics) , 1987 .

[5]  S. H. Lam,et al.  A study of homogeneous methanol oxidation kinetics using CSP , 1992 .

[6]  Hans G. Kaper,et al.  Asymptotic analysis of two reduction methods for systems of chemical reactions , 2002 .

[7]  Ulrich Maas,et al.  Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space , 1992 .

[8]  B O Palsson,et al.  Mathematical modelling of dynamics and control in metabolic networks. I. On Michaelis-Menten kinetics. , 1984, Journal of theoretical biology.

[9]  L. A. Segel,et al.  The Quasi-Steady-State Assumption: A Case Study in Perturbation , 1989, SIAM Rev..

[10]  Anthony J. Roberts Computer algebra derives correct initial conditions for low-dimensional dynamical models , 2000 .

[11]  Alexander N Gorban,et al.  Invariant grids for reaction kinetics , 2003 .

[12]  Alexander N. Gorban,et al.  Method of invariant manifolds and regularization of acoustic spectra , 1994 .

[13]  Mauro Valorani,et al.  Explicit time-scale splitting algorithm for stiff problems: auto-ignition of gaseous mixtures behind a steady shock , 2001 .

[14]  Hans G. Kaper,et al.  Analysis of the Computational Singular Perturbation Reduction Method for Chemical Kinetics , 2004, J. Nonlinear Sci..

[15]  Alison S. Tomlin,et al.  The use of algebraic sets in the approximation of inertial manifolds and lumping in chemical kinetic systems , 1995 .

[16]  S. H. Lam,et al.  CONVENTIONAL ASYMPTOTICS AND COMPUTATIONAL SINGULAR PERTURBATION FOR SIMPLIFIED KINETICS MODELLING , 1999 .

[17]  Epaminondas Mastorakos,et al.  Global reduced mechanisms for methane and hydrogen combustion with nitric oxide formation constructed with CSP data , 1999 .

[18]  Bernhard O. Palsson,et al.  On the dynamics of the irreversible Michaelis-Menten reaction mechanism , 1987 .

[19]  Tamás Turányi,et al.  On the error of the quasi-steady-state approximation , 1993 .

[20]  A. N. Gorban,et al.  Constructive methods of invariant manifolds for kinetic problems , 2003 .

[21]  Marc R. Roussel,et al.  Geometry of the steady-state approximation: Perturbation and accelerated convergence methods , 1990 .

[22]  Dimitris A. Goussis,et al.  Asymptotic Solution of Stiff PDEs with the CSP Method: The Reaction Diffusion Equation , 1998, SIAM J. Sci. Comput..

[23]  Simon J. Fraser,et al.  The steady state and equilibrium approximations: A geometrical picture , 1988 .

[24]  A. Jamiołkowski Book reviewApplications of Lie groups to differential equations : Peter J. Olver (School of Mathematics, University of Minnesota, Minneapolis, U.S.A): Graduate Texts in Mathematics, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986, XXVI+497pp. , 1989 .

[25]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[26]  Tianfeng Lu,et al.  Complex CSP for Chemistry Reduction and Analysis , 2001 .

[27]  Ulrich Maas,et al.  Implementation of simplified chemical kinetics based on intrinsic low-dimensional manifolds , 1992 .

[28]  Habib N. Najm,et al.  CSP analysis of a transient flame-vortex interaction: time scales and manifolds , 2003 .

[29]  S. H. Lam,et al.  Using CSP to Understand Complex Chemical Kinetics ∗ , 1992 .

[30]  S. H. Lam,et al.  Understanding complex chemical kinetics with computational singular perturbation , 1989 .

[31]  S. Lam,et al.  The CSP method for simplifying kinetics , 1994 .

[32]  Kenneth D. Mease,et al.  Geometry of Computational Singular Perturbations , 1995 .

[33]  Iliya V. Karlin,et al.  Method of invariant manifold for chemical kinetics , 2003 .