THE FIRST Hi-GAL OBSERVATIONS OF THE OUTER GALAXY: A LOOK AT STAR FORMATION IN THE THIRD GALACTIC QUADRANT IN THE LONGITUDE RANGE 216.°5 ≲ ℓ ≲ 225.°5

We present the first Herschel PACS and SPIRE photometric observations in a portion of the outer Galaxy (216.o5≾l≾ 225.o5 and –2°≾b≾0°) as a part of the Hi-GAL survey. The maps between 70 and 500 μm, the derived column density and temperature maps, and the compact source catalog are presented. NANTEN CO(1-0) line observations are used to derive cloud kinematics and distances so that we can estimate distance-dependent physical parameters of the compact sources (cores and clumps) having a reliable spectral energy distribution that we separate into 255 proto-stellar and 688 starless sources. Both typologies are found in association with all the distance components observed in the field, up to ~5.8 kpc, testifying to the presence of star formation beyond the Perseus arm at these longitudes. Selecting the starless gravitationally bound sources, we identify 590 pre-stellar candidates. Several sources of both proto- and pre-stellar nature are found to exceed the minimum requirement for being compatible with massive star formation based on the mass-radius relation. For the pre-stellar sources belonging to the Local arm (d ≾ 1.5 kpc) we study the mass function whose high-mass end shows a power law N(log M)∝M^(–1.0 ± 0.2). Finally, we use a luminosity versus mass diagram to infer the evolutionary status of the sources, finding that most of the proto-stellar sources are in the early accretion phase (with some cases compatible with a Class I stage), while for pre-stellar sources, in general, accretion has not yet started.

[1]  A. R. Rivolo,et al.  Mass, luminosity, and line width relations of Galactic molecular clouds , 1987 .

[2]  S. Sharpless A Catalogue of H II Regions. , 1959 .

[3]  G. Carraro,et al.  Spiral Structure in the Outer Galactic Disk. I. The Third Galactic Quadrant , 2007, 0709.3973.

[4]  J. Alves,et al.  The mass function of dense molecular cores and the origin of the IMF , 2007 .

[5]  T. M. Bania,et al.  The Structure of Four Molecular Cloud Complexes in the BU-FCRAO Milky Way Galactic Ring Survey , 2001 .

[6]  T. Umemoto,et al.  Erratum: Atlas and Catalog of Dark Clouds Based on Digitized Sky Survey I , 2005 .

[7]  Sp,et al.  Star formation history of Canis Major R1 I. Wide-Field X-ray study of the young stellar population , 2009, 0909.2888.

[8]  G. Carraro,et al.  Spiral structure of the third galactic quadrant and the solution to the Canis Major debate , 2006 .

[9]  J. Vallée The Spiral Arms and Interarm Separation of the Milky Way: An Updated Statistical Study , 2005 .

[10]  Peter G. Martin,et al.  Dust temperature tracing the ISRF intensity in the Galaxy , 2010 .

[11]  H. Roussel,et al.  From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt survey , 2010, 1005.2618.

[12]  Ralf S. Klessen One-Point Probability Distribution Functions of Supersonic Turbulent Flows in Self-gravitating Media , 2000 .

[13]  Jonathan P. Williams,et al.  HERSCHEL REVEALS MASSIVE COLD CLUMPS IN NGC 7538 , 2013, 1307.0022.

[14]  R. Snell,et al.  THE COLD, MASSIVE MOLECULAR CLOUD G216-2.5 .2. STRUCTURE AND KINEMATICS , 1994 .

[15]  H. Bischof,et al.  The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory , 2010, 1005.1487.

[16]  Turbulent Gas Flows in the Rosette and G216-2.5 Molecular Clouds: Assessing Turbulent Fragmentation Descriptions of Star Formation , 2005, astro-ph/0511441.

[17]  K. Menten,et al.  Determine absolute positions of 6.7 GHz methanol masers , 2009 .

[18]  D. Elia,et al.  Molecular gas and a new young stellar cluster in the far outer Galaxy , 2009, 0904.3502.

[19]  T. Pillai,et al.  HOW MANY INFRARED DARK CLOUDS CAN FORM MASSIVE STARS AND CLUSTERS? , 2010, 1009.1617.

[20]  R. Kawabe,et al.  THE DYNAMICAL STATE OF THE SERPENS SOUTH FILAMENTARY INFRARED DARK CLOUD , 2013, 1309.2425.

[21]  N. Peretto,et al.  Herschel Observations of a Potential Core-Forming Clump: Perseus B1-E , 2011, 1111.7021.

[22]  S. Molinari,et al.  The evolution of the spectral energy distribution in massive young stellar objects , 2008 .

[23]  K. Rice,et al.  Protostars and Planets V , 2005 .

[24]  Simon J. E. Radford,et al.  Warm Molecular Gas in the Primeval Galaxy IRAS 10214+4724 , 1992 .

[25]  G. A. Moellenbrock,et al.  TRIGONOMETRIC PARALLAXES OF MASSIVE STAR-FORMING REGIONS. VI. GALACTIC STRUCTURE, FUNDAMENTAL PARAMETERS, AND NONCIRCULAR MOTIONS , 2009, 0902.3913.

[26]  S. Molinari,et al.  A molecular-line study of clumps with embedded high-mass protostar candidates , 2001, astro-ph/0103223.

[27]  F. Piacentini,et al.  An analysis of star formation with Herschel in the Hi-GAL survey - I. The science demonstration phase fields , 2012, 1211.3747.

[28]  F. Piacentini,et al.  A Herschel study of YSO evolutionary stages and formation timelines in two fields of the Hi-GAL survey , 2010, 1005.1783.

[29]  Detection of a young stellar population in the background of open clusters in the Third Galactic Quadrant (implicancies) , 2005, astro-ph/0508088.

[30]  A. Kawamura,et al.  13CO (J=1–0) Survey of Molecular Clouds toward the Monoceros and Canis Major Region , 2004 .

[31]  B. T. Lynds Catalogue of Dark Nebulae. , 1962 .

[32]  Y. Sofue,et al.  Three-Dimensional Distribution of the ISM in the Milky Way Galaxy: II. The Molecular Gas Disk , 2006, astro-ph/0610769.

[33]  E. Rosolowsky,et al.  The Mass Distribution and Lifetime of Prestellar Cores in Perseus, Serpens, and Ophiuchus , 2008, 0805.1075.

[34]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[35]  A. Goodman,et al.  CO Isotopologues in the Perseus Molecular Cloud Complex: the X-factor and Regional Variations , 2008, 0802.0708.

[36]  M. Sauvage,et al.  Initial highlights of the HOBYS key program , the Herschel imaging survey of OB young stellar objects Journal Item , 2018 .

[37]  Leo Blitz,et al.  DETERMINING STRUCTURE IN MOLECULAR CLOUDS , 1994 .

[38]  B. Nisini,et al.  Mapping Molecular Emission in Vela Molecular Ridge Cloud D , 2006, astro-ph/0610083.

[39]  Martin G. Cohen,et al.  A Population of Cold Cores in the Galactic Plane , 1998 .

[40]  D. Hartmann,et al.  The Milky Way in Molecular Clouds: A New Complete CO Survey , 2000, astro-ph/0009217.

[41]  F. Schloerb,et al.  The Five College Radio Astronomy Observatory CO Survey of the Outer Galaxy , 1998 .

[42]  M. Sauvage,et al.  Hi-GAL: The Herschel Infrared Galactic Plane Survey , 2010, 1001.2106.

[43]  C. R. Kerton,et al.  An Outer Galaxy Molecular Cloud Catalog , 2003 .

[44]  B. L. Ulich,et al.  Recommendations for calibration of millimeter-wavelength spectral line data. , 1981 .

[45]  E. Young,et al.  DETECTION OF STAR FORMATION IN THE UNUSUALLY COLD GIANT MOLECULAR CLOUD G216-2.5 , 2009, 0902.3168.

[46]  A. Stark,et al.  Catalog of CO radial velocities toward galactic H II regions , 1982 .

[47]  M. Sauvage,et al.  Herschel observations of embedded protostellar clusters in the Rosette Molecular Cloud , 2010, 1005.3118.

[48]  Adam Ginsburg,et al.  The Bolocam Galactic Plane Survey , 2009 .

[49]  Giant Molecular Clouds in M64 , 2005, astro-ph/0501387.

[50]  Adam K. Leroy,et al.  The Resolved Properties of Extragalactic Giant Molecular Clouds , 2008, Proceedings of the International Astronomical Union.

[51]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[52]  C. McKee,et al.  A minimum column density of 1 g cm-2 for massive star formation , 2008, Nature.

[53]  Thomas S. Huang,et al.  Image processing , 1971 .

[54]  R. Klessen,et al.  Modelling CO emission – I. CO as a column density tracer and the X factor in molecular clouds , 2010, 1011.2019.

[55]  T. Henning,et al.  Probing the evolution of molecular cloud structure II. From chaos to confinement , 2011, 1104.0678.

[56]  P. Andre',et al.  The Herschel view of the on-going star formation in the Vela-C molecular cloud , 2012, 1202.1413.

[57]  Erik Rosolowsky,et al.  Bias‐free Measurement of Giant Molecular Cloud Properties , 2006, astro-ph/0601706.

[58]  Heidelberg,et al.  Cluster-formation in the Rosette molecular cloud at the junctions of filaments , 2012, Astronomy & Astrophysics.

[59]  M. Morris,et al.  The large system of molecular clouds in Orion and Monoceros , 1986 .

[60]  H. Zinnecker,et al.  The initial mass function 50 years later , 2005 .

[61]  S. Bontemps,et al.  Giving physical significance to the Hi-GAL data: determining the distance of cold dusty cores in the Milky Way , 2011 .

[62]  Frédérique Motte,et al.  The circumstellar environment of low-mass protostars: A millimeter continuum mapping survey ? , 2001 .

[63]  M. Lombardi,et al.  ON THE STAR FORMATION RATES IN MOLECULAR CLOUDS , 2010, 1009.2985.

[64]  N. Murray STAR FORMATION EFFICIENCIES AND LIFETIMES OF GIANT MOLECULAR CLOUDS IN THE MILKY WAY , 2010, 1007.3270.

[65]  S. Molinari,et al.  On the shape of the mass-function of dense clumps in the Hi-GAL fields - I. Spectral energy distribution determination and global properties of the mass-functions , 2012, 1209.4465.

[66]  E. Bergin,et al.  Cold Dark Clouds: The Initial Conditions for Star Formation , 2007, 0705.3765.

[67]  M. Sauvage,et al.  The Aquila prestellar core population revealed by Herschel , 2010, 1005.2981.

[68]  Annie Zavagno,et al.  Filaments and ridges in Vela C revealed by Herschel: from low-mass to high-mass star-forming sites , 2011, 1108.0941.

[69]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[70]  R. Larson Turbulence and star formation in molecular clouds , 1980 .

[71]  Sergio Molinari,et al.  Source extraction and photometry for the far-infrared and sub-millimeter continuum in the presence of complex backgrounds , 2010, 1011.3946.