Regulation Mechanisms in Spatial Stochastic Development Models

The aim of this paper is to analyze different regulation mechanisms in spatial continuous stochastic development models. We describe the density behavior for models with global mortality and local establishment rates. We prove that the local self-regulation via a competition mechanism (density dependent mortality) may suppress a unbounded growth of the averaged density if the competition kernel is superstable.

[1]  David Ruelle,et al.  Superstable interactions in classical statistical mechanics , 1970 .

[2]  J. Carstensen One Component Systems , 2000 .

[3]  Steven N. Evans,et al.  A generalized model of mutation-selection balance with applications to aging , 2004, Adv. Appl. Math..

[4]  Dmitri Finkelshtein,et al.  Individual Based Model with Competition in Spatial Ecology , 2008, SIAM J. Math. Anal..

[5]  Non-equilibrium stochastic dynamics in continuum: The free case , 2007, math/0701736.

[6]  E. Lytvynov,et al.  Glauber dynamics of continuous particle systems , 2003, math/0306252.

[7]  Nancy L. Garcia,et al.  Spatial birth and death processes as solutions of stochastic equations , 2006 .

[8]  Yuri Kondratiev,et al.  One-Particle Subspace of the Glauber Dynamics Generator for Continuous Particle Systems , 2004 .

[9]  D. Surgailis On Poisson multiple stochastic integrals and associated equilibrium Markov processes , 1983 .

[10]  D. Surgailis On multiple Poisson stochastic integrals and associated Markov semigroups , 1984 .

[11]  Selection-mutation balance models with epistatic selection , 2008 .

[12]  A. Lenard,et al.  States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures , 1975 .

[13]  A. Lenard,et al.  States of classical statistical mechanical systems of infinitely many particles. I , 1975 .

[14]  Tobias Kuna,et al.  HARMONIC ANALYSIS ON CONFIGURATION SPACE I: GENERAL THEORY , 2002 .

[15]  Yuri G. Kondratiev,et al.  Markov evolutions and hierarchical equations in the continuum. I: one-component systems , 2007, 0707.0619.

[16]  G. Kallianpur,et al.  Theory and Application of Random Fields , 1983 .

[17]  Yuri Kondratiev,et al.  On non-equilibrium stochastic dynamics for interacting particle systems in continuum , 2008 .

[18]  Oleksandr Kutoviy,et al.  On the metrical properties of the configuration space , 2006 .

[19]  Yuri Kondratiev,et al.  Nonequilibrium Glauber-type dynamics in continuum , 2006 .

[20]  Filippo Cesi,et al.  The spectral gap for a Glauber-type dynamics in a continuous gas☆ , 2002 .

[21]  P. Smedt,et al.  The superstability of pair-potentials of positive type , 1984 .