A Nonlinear Hyperbolic Model for Radiative Transfer Equation in Slab Geometry

Abstract This paper is concerned with the approximation of the radiative transfer equation for a grey medium in the slab geometry by the moment method. We develop a novel moment model inspired by the classical P N model and M N model. The new model takes the ansatz of the M 1 model as the weight function and follows the primary idea of the P N model to approximate the specific intensity by expanding it around the weight function in terms of orthogonal polynomials. The weight function uses the information of the first two moments, which brings the new model the capability to approximate an anisotropic distribution. Mathematical properties of the moment model are investigated, and particularly the hyperbolicity and the characteristic structure of the Riemann problem of the model with three moments are studied in detail. Some numerical simulations demonstrate its numerical efficiency and show its superior in comparison to the P N model.

[1]  C. D. Levermore,et al.  Moment closure hierarchies for kinetic theories , 1996 .

[2]  Ruo Li,et al.  Approximating the $M_2$ method by the extended quadrature method of moments for radiative transfer in slab geometry , 2016 .

[3]  Tiao Lu,et al.  Quantum Hydrodynamic Model by Moment Closure of Wigner Equation , 2012 .

[4]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[5]  Jeffery D. Densmore,et al.  A hybrid transport-diffusion Monte Carlo method for frequency-dependent radiative-transfer simulations , 2012, J. Comput. Phys..

[6]  Anthony B. Davis,et al.  3D Radiative Transfer in Cloudy Atmospheres , 2005 .

[7]  B. Pagel,et al.  Stellar atmospheres , 1978, Nature.

[8]  J. Jeans,et al.  The Equations of Radiative Transfer of Energy , 1917 .

[9]  Ville Kolehmainen,et al.  Hybrid radiative-transfer-diffusion model for optical tomography. , 2005, Applied optics.

[10]  C. E. Siewert,et al.  A high-order spherical harmonics solution to the standard problem in radiative transfer , 1984 .

[11]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases : notes added in 1951 , 1951 .

[12]  Zhonghua Qiao,et al.  Dimension-Reduced Hyperbolic Moment Method for the Boltzmann Equation with BGK-Type Collision , 2014 .

[13]  G. N. Minerbo,et al.  Maximum entropy Eddington factors , 1978 .

[14]  Rémi Abgrall,et al.  A comment on the computation of non-conservative products , 2010, J. Comput. Phys..

[15]  Mojisola Adebayo STARS , 2019, Wasafiri.

[16]  Cory D. Hauck,et al.  High-Order Entropy-Based Closures for Linear Transport in Slab Geometries , 2011 .

[17]  Ruo Li,et al.  Quantum hydrodynamic model of density functional theory , 2013, Journal of Mathematical Chemistry.

[18]  W. Marsden I and J , 2012 .

[19]  J. Broadwell,et al.  Study of rarefied shear flow by the discrete velocity method , 1964, Journal of Fluid Mechanics.

[20]  Ryan G. McClarren,et al.  Semi-implicit time integration for PN thermal radiative transfer , 2008, J. Comput. Phys..

[21]  Manuel Torrilhon,et al.  Numerical Simulation of Microflows Using Moment Methods with Linearized Collision Operator , 2018, J. Sci. Comput..

[22]  W. Gautschi Orthogonal Polynomials: Computation and Approximation , 2004 .

[23]  B. Guo,et al.  Spectral Methods and Their Applications , 1998 .

[24]  Edward W. Larsen,et al.  Advances in Discrete-Ordinates Methodology , 2010 .

[25]  Ruo Li,et al.  Globally Hyperbolic Regularization of Grad's Moment System , 2012 .

[26]  J. Marsden,et al.  The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic system, I , 1972 .

[27]  Huazhong Tang,et al.  Globally Hyperbolic Moment Model of Arbitrary Order for One-Dimensional Special Relativistic Boltzmann Equation , 2016, 1705.03990.

[28]  R. P. Smedley-Stevenson,et al.  Linear and quadratic octahedral wavelets on the sphere for angular discretisations of the Boltzmann transport equation , 2005 .

[29]  Gordon L. Olson,et al.  An analytical benchmark for non-equilibrium radiative transfer in an isotropically scattering medium , 1997 .

[30]  James Paul Holloway,et al.  On solutions to the Pn equations for thermal radiative transfer , 2008, J. Comput. Phys..

[31]  Cory D. Hauck,et al.  High-Order Entropy-Based Closures for Linear Transport in Slab Geometry II: A Computational Study of the Optimization Problem , 2012, SIAM J. Sci. Comput..

[32]  Ruo Li,et al.  Globally Hyperbolic Regularization of Grad's Moment System , 2011, 1203.0376.

[33]  Ruo Li,et al.  A Nonlinear Moment Model for Radiative Transfer Equation , 2018, Multiscale Model. Simul..

[34]  Jerome Spanier,et al.  Coupled Forward-Adjoint Monte Carlo Simulations of Radiative Transport for the Study of Optical Probe Design in Heterogeneous Tissues , 2007, SIAM J. Appl. Math..

[35]  M. Ismail Monotonicity of Zeros of Orthogonal Polynomials , 1989 .

[36]  Thomas A. Brunner,et al.  Forms of Approximate Radiation Transport , 2002 .

[37]  Ruo Li,et al.  Model Reduction of Kinetic Equations by Operator Projection , 2014, 1412.7296.

[38]  W. Steckelmacher Molecular gas dynamics and the direct simulation of gas flows , 1996 .

[39]  Yuwei Fan,et al.  Diagram notation for the derivation of hyperbolic moment systems , 2020 .

[40]  Mehdi Eshagh,et al.  On the convergence of spherical harmonic expansion of topographic and atmospheric biases in gradiometry , 2009 .

[41]  Sander Rhebergen,et al.  Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations , 2008, J. Comput. Phys..

[42]  Alexander D. Klose,et al.  Reprint of: Optical tomography using the time-independent equation of radiative transfer --- Part 1: Forward model , 2010 .

[43]  Cory D. Hauck,et al.  Radiation transport modeling using extended quadrature method of moments , 2013, J. Comput. Phys..

[44]  Ruo Li,et al.  A Framework on Moment Model Reduction for Kinetic Equation , 2015, SIAM J. Appl. Math..

[45]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[46]  G. C. Pomraning The Equations of Radiation Hydrodynamics , 2005 .

[47]  Michael L. Hall,et al.  Diffusion, P1, and other approximate forms of radiation transport , 2000 .

[48]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[49]  Edgar Olbrant,et al.  Perturbed, Entropy-Based Closure for Radiative Transfer , 2012, 1208.0772.

[50]  Ruo Li,et al.  Globally hyperbolic regularized moment method with applications to microflow simulation , 2013 .

[51]  Ryan G. McClarren,et al.  Anti-diffusive radiation flow in the cooling layer of a radiating shock , 2010 .

[52]  Rainer Koch,et al.  Evaluation of quadrature schemes for the discrete ordinates method , 2004 .

[53]  Kerstin Küpper,et al.  Convergence of filtered spherical harmonic equations for radiation transport , 2016 .

[54]  B. Dubroca,et al.  Etude théorique et numérique d'une hiérarchie de modèles aux moments pour le transfert radiatif , 1999 .

[55]  Lexing Ying,et al.  Fast algorithms for integral formulations of steady-state radiative transfer equation , 2018, J. Comput. Phys..

[56]  James Paul Holloway,et al.  Two-dimensional time dependent Riemann solvers for neutron transport , 2005 .

[57]  Ryan G. McClarren,et al.  Positive PN Closures , 2010, SIAM J. Sci. Comput..

[58]  G. Szegő Polynomials orthogonal on the unit circle , 1939 .

[59]  H. Grad On the kinetic theory of rarefied gases , 1949 .

[60]  G. D. Maso,et al.  Definition and weak stability of nonconservative products , 1995 .

[61]  James Paul Holloway,et al.  One-dimensional Riemann solvers and the maximum entropy closure , 2001 .

[62]  Ruo Li,et al.  13-Moment System with Global Hyperbolicity for Quantum Gas , 2016, 1607.00175.

[63]  Manuel Torrilhon,et al.  A framework for hyperbolic approximation of kinetic equations using quadrature-based projection methods , 2014 .