Generalized constitutive equation for polymeric liquid crystals Part 1. Model formulation using the Hamiltonian (poisson bracket) formulation

Abstract The Hamiltonian formulation of equations in continuum mechanics through Poisson brackets, developed in Z.R. Iwinski and L.A. Turski, Lett. Appl. Eng. Sci., 4 (1976), 179–191, P.J. Morrison and J.M. Greene, Phys. Rev. Lett., 45 (1980) 790–794, I.E. Dzyaloshinskii and G.E. Volovick, Ann. Phys., 125 (1980) 67–97, D.D. Holm, J.E. Marsden, T. Ratiu and A. Weinstein, Phys. Rep., 123 (1985) 1–116, M. Grmela, Phys. Lett. A, 130 (1988) 81–86, and A.N. Beris and B.J. Edwards, J. Rheol., 34 (1990) 55–78, for a class of incompressible fluids, is used here in order to generate a constitutive equation for the stress and the order parametr tensor for a polymeric liquid crystal. A free energy expression, of the type used by Doi in his theory for concentrated solutions of rigid rods, is used in addition to the Frank elasticity expression employed in the Leslie—Ericksen—Parodi (LEP) theory to model the effect of spatial gradients in the liquid crystalline microstructure. For homogeneous systems, the analysis leads to a model which is equivalent to a generalization of Doi theory out to fourth-order terms in S . Truncating this model at second-order terms gives the Doi equations exactly. To evaluate the expanded model, results for steady simple shear and extensional flows are compared against the Doi model predictions. The constitutive equation resulting from the expanded model is compared against the LEP constitutive equation and the parameters between the two are correlated. The additional stress terms for non-homogeneous systems reduce to a recently presented (B.J. Edwards and A.N. Beris, J. Rheol., 33 (1989) 1189–1193; M. Grmela, Phys. Lett. A, 137 (1989) 342–348) generalization of the Ericksen stress expression in terms of the second-order parameter tensor. The model presented is a generalization and extension of the order-parameter-based theory of Doi which allows a greater flexibility in describing the rheological properties of polymeric liquid crystalline systems

[1]  Philip J. Morrison,et al.  Bracket formulation for irreversible classical fields , 1984 .

[2]  A. B. Metzner,et al.  Rheological properties of polymeric liquid crystals , 1986 .

[3]  F. M. Leslie Some thermal effects in cholesteric liquid crystals , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[4]  A. Beris,et al.  Note: Order Parameter Representation of Spatial Inhomogeneities of Polymeric Liquid Crystals , 1989 .

[5]  M. J. Stephen,et al.  Isotropic-Nematic Phase Transition in Liquid Crystals , 1970 .

[6]  P. Morrison,et al.  Noncanonical Hamiltonian Density Formulation of Hydrodynamics and Ideal Magnetohydrodynamics. , 1980 .

[7]  N. David Mermin,et al.  Crystalline liquids: the blue phases , 1989 .

[8]  G. Berry Rheological Properties of Nematic Solutions of Rodlike Polymers , 1988 .

[9]  Allan N. Kaufman,et al.  DISSIPATIVE HAMILTONIAN SYSTEMS: A UNIFYING PRINCIPLE , 1984 .

[10]  F. M. Leslie Some constitutive equations for liquid crystals , 1968 .

[11]  S. Lee The Leslie coefficients for a polymer nematic liquid crystal , 1988 .

[12]  A. Beris,et al.  Poisson bracket formulation of incompressible flow equations in continuum mechanics , 1990 .

[13]  Masao Doi,et al.  Constitutive Equation for Nematic Liquid Crystals under Weak Velocity Gradient Derived from a Molecular Kinetic Equation , 1983 .

[14]  W. H. Jeu,et al.  Landau theory of the nematic-isotropic phase transition , 1986 .

[15]  M. Grmela Hamiltonian dynamics of incompressible elastic fluids , 1988 .

[16]  J. Mewis,et al.  Transient Behavior of Liquid Crystalline Solutions of Poly(benzylglutamate) , 1986 .

[17]  Jerrold E. Marsden,et al.  Nonlinear stability of fluid and plasma equilibria , 1985 .

[18]  Masao Doi,et al.  Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases , 1981 .

[19]  O. Parodi,et al.  Stress tensor for a nematic liquid crystal , 1970 .

[20]  M. Doi,et al.  Concentration fluctuation of stiff polymers. III. Spinodal decomposition , 1988 .

[21]  P. Gennes Phenomenology of short-range-order effects in the isotropic phase of nematic materials , 1969 .

[22]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[23]  Meyer,et al.  Light-scattering study of a polymer nematic liquid crystal. , 1985, Physical review letters.

[24]  J. Ericksen Conservation Laws for Liquid Crystals , 1961 .

[25]  M. Grmela Hamiltonian dynamics of elastic fluids: Ericksen stresses , 1989 .

[26]  P. Gennes,et al.  The physics of liquid crystals , 1974 .

[27]  I. Dzyaloshinskiǐ,et al.  Poisson brackets in condensed matter physics , 1980 .

[28]  M. Doi Rotational relaxation time of rigid rod-like macromolecule in concentrated solution , 1975 .

[29]  B. Finlayson,et al.  Application of the Continuum Theory to Nematic Liquid Crystals , 1972 .

[30]  A. B. Metzner,et al.  The rheology of polymeric liquid crystals , 1986 .

[31]  F. C. Frank,et al.  I. Liquid crystals. On the theory of liquid crystals , 1958 .

[32]  M. Grmela Bracket formulation of diffusion-convection equations , 1986 .

[33]  L. Onsager THE EFFECTS OF SHAPE ON THE INTERACTION OF COLLOIDAL PARTICLES , 1949 .

[34]  G. Marrucci Prediction of Leslie Coefficients for Rodlike Polymer Nematics , 1982 .

[35]  M. Doi,et al.  Concentration fluctuation of stiff polymers. II. Dynamical structure factor of rod‐like polymers in the isotropic phase , 1988 .