Noise-Robust Modulation Identification Method for Adaptive Receiver Based on Software Defined Radio

In this paper, we propose an effective noise- robust modulation identification algorithm for adaptive receiver based on software defined radio. The proposed method can estimate the carrier frequency, symbol rate, and modulation scheme of the received signal without the use of the handshaking process requiring supplementary information such as the training sequence. Experimental results show that the proposed algorithm demodulates the signal with a low probability of error at the noisy channel conditions.

[1]  Hiroyuki Ishii,et al.  Modulation parameter measurement method for CPFSK (based on software defined radio) , 2001, 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. PIMRC 2001. Proceedings (Cat. No.01TH8598).

[2]  Yiu-Tong Chan,et al.  Symbol rate estimation by the wavelet transform , 1997, Proceedings of 1997 IEEE International Symposium on Circuits and Systems. Circuits and Systems in the Information Age ISCAS '97.

[3]  R. Mammone,et al.  Modulation classification using a neutral tree network , 1993, Proceedings of MILCOM '93 - IEEE Military Communications Conference.

[4]  Andreas Polydoros,et al.  Likelihood methods for MPSK modulation classification , 1995, IEEE Trans. Commun..

[5]  D. Boudreau,et al.  An automatic modulation recognition algorithm for spectrum monitoring applications , 1999, 1999 IEEE International Conference on Communications (Cat. No. 99CH36311).

[6]  Elsayed Elsayed Azzouz,et al.  Automatic identification of digital modulation types , 1995, Signal Process..

[7]  S. S. Soliman,et al.  Automatic modulation recognition of digitally modulated signals , 1989, IEEE Military Communications Conference, 'Bridging the Gap. Interoperability, Survivability, Security'.

[8]  K. C. Ho,et al.  Modulation identification by the wavelet transform , 1995, Proceedings of MILCOM '95.

[9]  Ajit S. Bopardikar,et al.  Wavelet transforms - introduction to theory and applications , 1998 .

[10]  E. Buracchini,et al.  The software radio concept , 2000, IEEE Commun. Mag..

[11]  Hwang Soo Lee,et al.  Detection of symbol rate of unknown digital communication signals , 1993 .

[12]  K. C. Ho,et al.  Identification of digital modulation types using the wavelet transform , 1999, MILCOM 1999. IEEE Military Communications. Conference Proceedings (Cat. No.99CH36341).

[13]  Hiroyuki Ishii,et al.  Automatic modulation identification for non-linear digital modulation (based on software radio techniques) , 2003, 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003..

[14]  M. A. Wickert,et al.  Symbol rate detectability of filtered OQPSK by a delay and multiply receiver , 1988, Seventh Annual International Phoenix Conference on Computers an Communications. 1988 Conference Proceedings.

[15]  Joohwan Chun,et al.  Classification of digital modulations using the LPC , 2000, Proceedings of the IEEE 2000 National Aerospace and Electronics Conference. NAECON 2000. Engineering Tomorrow (Cat. No.00CH37093).

[16]  Joseph Mitola,et al.  Software radio architecture: a mathematical perspective , 1999, IEEE J. Sel. Areas Commun..

[17]  Ryuji Kohno,et al.  Blind adaptive estimation of modulation scheme for software defined radio , 2000, 11th IEEE International Symposium on Personal Indoor and Mobile Radio Communications. PIMRC 2000. Proceedings (Cat. No.00TH8525).

[18]  Hiroyuki Ishii,et al.  Automatic modulation identification for linear digital modulation , 2003, 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003..