Multiscale recordings reveal the dynamic spatial structure of human seizures

The cellular activity underlying human focal seizures, and its relationship to key signatures in the EEG recordings used for therapeutic purposes, has not been well characterized despite many years of investigation both in laboratory and clinical settings. The increasing use of microelectrodes in epilepsy surgery patients has made it possible to apply principles derived from laboratory research to the problem of mapping the spatiotemporal structure of human focal seizures, and characterizing the corresponding EEG signatures. In this review, we describe results from human microelectrode studies, discuss some data interpretation pitfalls, and explain the current understanding of the key mechanisms of ictogenesis and seizure spread.

[1]  Emery N Brown,et al.  Heterogeneous neuronal firing patterns during interictal epileptiform discharges in the human cortex. , 2010, Brain : a journal of neurology.

[2]  Tony A. Fields,et al.  Cerebral microdialysis combined with single-neuron and electroencephalographic recording in neurosurgical patients. Technical note. , 1999, Journal of neurosurgery.

[3]  Wim van Drongelen,et al.  Neuronal Bursting Properties in Focal and Parafocal Regions in Pediatric Neocortical Epilepsy Stratified by Histology , 2010, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[4]  Joshua A. Dian,et al.  Brief activation of GABAergic interneurons initiates the transition to ictal events through post-inhibitory rebound excitation , 2018, Neurobiology of Disease.

[5]  R. S. Sloviter,et al.  Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. , 1987, Science.

[6]  Mark R. Bower,et al.  Spatiotemporal neuronal correlates of seizure generation in focal epilepsy , 2012, Epilepsia.

[7]  J. Maunsell,et al.  Different Origins of Gamma Rhythm and High-Gamma Activity in Macaque Visual Cortex , 2011, PLoS biology.

[8]  Shennan A. Weiss,et al.  Interneurons and principal cell firing in human limbic areas at focal seizure onset , 2019, Neurobiology of Disease.

[9]  T A Pedley,et al.  Propagation patterns of temporal spikes. , 1995, Electroencephalography and clinical neurophysiology.

[10]  Charles L. Wilson,et al.  Structurally stable burst and synchronized firing in human amygdala neurons: Auto- and cross-correlation analyses in temporal lobe epilepsy , 1987, Epilepsy Research.

[11]  S. Spencer Neural Networks in Human Epilepsy: Evidence of and Implications for Treatment , 2002, Epilepsia.

[12]  Emad N Eskandar,et al.  Inhibitory single neuron control of seizures and epileptic traveling waves in humans , 2014, BMC Neuroscience.

[13]  Catherine A. Schevon,et al.  The Relationship Between Ictal Multi-Unit Activity and the Electrocorticogram , 2018, Int. J. Neural Syst..

[14]  P. Chauvel,et al.  The Role of Semiology in the Work-Up of Frontal Lobe Epilepsy: In the Eye of the Beholder , 2014 .

[15]  M J Kahana,et al.  Methods for implantation of micro-wire bundles and optimization of single/multi-unit recordings from human mesial temporal lobe , 2014, Journal of neural engineering.

[16]  Marom Bikson,et al.  Depolarization block of neurons during maintenance of electrographic seizures. , 2003, Journal of neurophysiology.

[17]  Stefano Panzeri,et al.  Modelling and analysis of local field potentials for studying the function of cortical circuits , 2013, Nature Reviews Neuroscience.

[18]  J. Hablitz,et al.  Optogenetic dissection of roles of specific cortical interneuron subtypes in GABAergic network synchronization , 2017, The Journal of physiology.

[19]  G. Somjen,et al.  Potassium and calcium concentrations in interstitial fluid of hippocampal formation during paroxysmal responses. , 1985, Journal of neurophysiology.

[20]  George J Augustine,et al.  Progressive NKCC1-Dependent Neuronal Chloride Accumulation during Neonatal Seizures , 2010, The Journal of Neuroscience.

[21]  W. Hauser,et al.  Comment on Epileptic Seizures and Epilepsy: Definitions Proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE) , 2005, Epilepsia.

[22]  C. Schevon,et al.  Seizure localization using ictal phase-locked high gamma , 2015, Neurology.

[23]  Brian Litt,et al.  Continuous energy variation during the seizure cycle: towards an on-line accumulated energy , 2005, Clinical Neurophysiology.

[24]  Allen Waziri,et al.  INITIAL SURGICAL EXPERIENCE WITH A DENSE CORTICAL MICROARRAY IN EPILEPTIC PATIENTS UNDERGOING CRANIOTOMY FOR SUBDURAL ELECTRODE IMPLANTATION , 2009, Neurosurgery.

[25]  Kaspar Anton Schindler,et al.  Synchronization and desynchronization in epilepsy: controversies and hypotheses , 2012, The Journal of physiology.

[26]  Omar J. Ahmed,et al.  Neuronal Ensemble Synchrony during Human Focal Seizures , 2014, The Journal of Neuroscience.

[27]  Tero Viitanen,et al.  The K+–Cl− cotransporter KCC2 promotes GABAergic excitation in the mature rat hippocampus , 2010, The Journal of physiology.

[28]  H. Lüders,et al.  Detection of Epileptiform Activity by Human Interpreters: Blinded Comparison between Electroencephalography and Magnetoencephalography , 2005, Epilepsia.

[29]  Massimo Scanziani,et al.  The contribution of synaptic location to inhibitory gain control in pyramidal cells , 2013, Physiological reports.

[30]  Daniel Gomez-Dominguez,et al.  Determinants of different deep and superficial CA1 pyramidal cell dynamics during sharp-wave ripples , 2015, Nature Neuroscience.

[31]  M. Kramer,et al.  Coalescence and Fragmentation of Cortical Networks during Focal Seizures , 2010, The Journal of Neuroscience.

[32]  Florian Mormann,et al.  Reliable Analysis of Single-Unit Recordings from the Human Brain under Noisy Conditions: Tracking Neurons over Hours , 2016, PloS one.

[33]  S. Schiff,et al.  Interneuron and pyramidal cell interplay during in vitro seizure-like events. , 2006, Journal of neurophysiology.

[34]  R. Yuste,et al.  The Source of Afterdischarge Activity in Neocortical Tonic–Clonic Epilepsy , 2007, The Journal of Neuroscience.

[35]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[36]  F. Jensen,et al.  NKCC1 transporter facilitates seizures in the developing brain , 2005, Nature Medicine.

[37]  Jean Gotman,et al.  Ictal and interictal high frequency oscillations in patients with focal epilepsy , 2011, Clinical Neurophysiology.

[38]  Andrew J Trevelyan,et al.  Feedforward inhibition ahead of ictal wavefronts is provided by both parvalbumin‐ and somatostatin‐expressing interneurons , 2019, The Journal of physiology.

[39]  P. Tresco,et al.  Acute microelectrode array implantation into human neocortex: preliminary technique and histological considerations. , 2006, Neurosurgical focus.

[40]  Michael R Sperling,et al.  Increased neuronal synchrony prepares mesial temporal networks for seizures of neocortical origin , 2018, Epilepsia.

[41]  A. Trevelyan Do Cortical Circuits Need Protecting from Themselves? , 2016, Trends in Neurosciences.

[42]  Jean Gotman,et al.  High‐frequency oscillations: The state of clinical research , 2017, Epilepsia.

[43]  R. Wong,et al.  Synchronization of inhibitory neurones in the guinea‐pig hippocampus in vitro. , 1994, The Journal of physiology.

[44]  A. Trevelyan The Direct Relationship between Inhibitory Currents and Local Field Potentials , 2009, The Journal of Neuroscience.

[45]  Y. Isomura,et al.  Excitatory gaba input directly drives seizure-like rhythmic synchronization in mature hippocampal CA1 pyramidal cells , 2003, Neuroscience.

[46]  Viktor K. Jirsa,et al.  The Virtual Epileptic Patient: Individualized whole-brain models of epilepsy spread , 2017, NeuroImage.

[47]  Mohammed Yeasin,et al.  Low‐voltage fast seizures in humans begin with increased interneuron firing , 2018, Annals of neurology.

[48]  M. Dichter,et al.  Cellular mechanisms of epilepsy: a status report. , 1987, Science.

[49]  Colin J. Akerman,et al.  Excitatory GABAergic signalling is associated with acquired benzodiazepine resistance in status epilepticus , 2018, bioRxiv.

[50]  J. Bellanger,et al.  Epileptic fast intracerebral EEG activity: evidence for spatial decorrelation at seizure onset. , 2003, Brain : a journal of neurology.

[51]  J. Gotman,et al.  High-frequency oscillations during human focal seizures. , 2006, Brain : a journal of neurology.

[52]  C. Schevon,et al.  How inhibition influences seizure propagation , 2013, Neuropharmacology.

[53]  C D Binnie,et al.  Origin and propagation of interictal discharges in the acute electrocorticogram. Implications for pathophysiology and surgical treatment of temporal lobe epilepsy. , 1997, Brain : a journal of neurology.

[54]  A. Losonczy,et al.  Regulation of neuronal input transformations by tunable dendritic inhibition , 2012, Nature Neuroscience.

[55]  Martin Vinck,et al.  Altered hippocampal interneuron activity precedes ictal onset , 2016, bioRxiv.

[56]  Kevin J. Staley,et al.  A Candidate Mechanism Underlying the Variance of Interictal Spike Propagation , 2012, The Journal of Neuroscience.

[57]  R. Miles,et al.  Perturbed Chloride Homeostasis and GABAergic Signaling in Human Temporal Lobe Epilepsy , 2007, The Journal of Neuroscience.

[58]  D. Spencer,et al.  Entorhinal‐Hippocampal Interactions in Medial Temporal Lobe Epilepsy , 1994, Epilepsia.

[59]  William W Lytton,et al.  Tonic-Clonic Transitions in Computer Simulation , 2007, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[60]  M. Kramer,et al.  Pyramidal cells accumulate chloride at seizure onset , 2012, Neurobiology of Disease.

[61]  Elliot H. Smith,et al.  The ictal wavefront is the spatiotemporal source of discharges during spontaneous human seizures , 2016, Nature Communications.

[62]  E. Harth,et al.  Electric Fields of the Brain: The Neurophysics of Eeg , 2005 .

[63]  W. J. Williams,et al.  Measuring the coherence of intracranial electroencephalograms , 1999, Clinical Neurophysiology.

[64]  Mario Cammarota,et al.  Fast spiking interneuron control of seizure propagation in a cortical slice model of focal epilepsy , 2013, The Journal of physiology.

[65]  R. Yuste,et al.  Feedforward Inhibition Contributes to the Control of Epileptiform Propagation Speed , 2007, The Journal of Neuroscience.

[66]  M. Avoli,et al.  Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro , 2002, Progress in Neurobiology.

[67]  Ankoor S. Shah,et al.  An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. , 2005, Journal of neurophysiology.

[68]  Brendon O. Watson,et al.  Modular Propagation of Epileptiform Activity: Evidence for an Inhibitory Veto in Neocortex , 2006, The Journal of Neuroscience.

[69]  Wim van Drongelen,et al.  Modeling Focal Epileptic Activity in the Wilson–Cowan Model with Depolarization Block , 2015, The Journal of Mathematical Neuroscience (JMN).

[70]  C. Schroeder,et al.  Microphysiology of Epileptiform Activity in Human Neocortex , 2008, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[71]  R. Quian Quiroga,et al.  Unsupervised Spike Detection and Sorting with Wavelets and Superparamagnetic Clustering , 2004, Neural Computation.

[72]  C. Koch,et al.  On the origin of the extracellular action potential waveform: A modeling study. , 2006, Journal of neurophysiology.

[73]  Sydney S. Cash,et al.  A Biologically Constrained, Mathematical Model of Cortical Wave Propagation Preceding Seizure Termination , 2015, PLoS Comput. Biol..

[74]  Kaspar Anton Schindler,et al.  Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG. , 2006, Brain : a journal of neurology.

[75]  H. Lüders,et al.  Presurgical evaluation of epilepsy. , 2001, Brain : a journal of neurology.

[76]  Mark A. Kramer,et al.  The effect of inhibition on the existence of traveling wave solutions for a neural field model of human seizure termination , 2018, Journal of Computational Neuroscience.

[77]  G. Ojemann,et al.  Neurons in human epileptic cortex: Correlation between unit and EEG activity , 1982, Annals of neurology.

[78]  D. Purpura,et al.  Intracellular Potentials of Cortical Neurons during Focal Epileptogenic Discharges , 1963, Science.

[79]  Joseph V Raimondo,et al.  Excitatory Effects of Parvalbumin-Expressing Interneurons Maintain Hippocampal Epileptiform Activity via Synchronous Afterdischarges , 2014, The Journal of Neuroscience.

[80]  T L Babb,et al.  Epileptogenesis of human limbic neurons in psychomotor epileptics. , 1976, Electroencephalography and clinical neurophysiology.

[81]  V. Mountcastle,et al.  Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: a correlation of findings obtained in a single unit analysis with cytoarchitecture. , 1959, Bulletin of the Johns Hopkins Hospital.

[82]  Dimitri M. Kullmann,et al.  KCC2 overexpression prevents the paradoxical seizure-promoting action of somatic inhibition , 2018 .

[83]  E. Kandel,et al.  Electrophysiology of hippocampal neurons. II. After-potentials and repetitive firing. , 1961, Journal of neurophysiology.

[84]  Neela K. Codadu,et al.  The Contribution of Raised Intraneuronal Chloride to Epileptic Network Activity , 2015, The Journal of Neuroscience.

[85]  Grant M. Fiddyment,et al.  Human seizures couple across spatial scales through travelling wave dynamics , 2017, Nature Communications.

[86]  Brian Litt,et al.  Virtual Cortical Resection Reveals Push-Pull Network Control Preceding Seizure Evolution , 2016, Neuron.

[87]  F W Sharbrough,et al.  Characterization and Comparison of Local Onset and Remote Propagated Electrographic Seizures Recorded with Intracranial Electrodes , 1998, Epilepsia.

[88]  Theoden I. Netoff,et al.  Dynamical changes in neurons during seizures determine tonic to clonic shift , 2011, Journal of Computational Neuroscience.

[89]  Mark R. Bower,et al.  Microseizures and the spatiotemporal scales of human partial epilepsy. , 2010, Brain : a journal of neurology.

[90]  Vadym Gnatkovsky,et al.  GABAA receptor-mediated networks during focal seizure onset and progression in vitro , 2019, Neurobiology of Disease.

[91]  Jing Zhang,et al.  Neuregulin 1 regulates excitability of fast-spiking neurons through Kv1.1 and acts in epilepsy , 2011, Nature Neuroscience.

[92]  C. A. Marsan,et al.  CORTICAL CELLULAR PHENOMENA IN EXPERIMENTAL EPILEPSY: INTERICTAL MANIFESTATIONS. , 1964, Experimental neurology.

[93]  Wim van Drongelen,et al.  Multiscale Aspects of Generation of High-Gamma Activity during Seizures in Human Neocortex123 , 2016, eNeuro.

[94]  L. Mei,et al.  Neuregulin 1 represses limbic epileptogenesis through ErbB4 in parvalbumin-expressing interneurons , 2011, Nature Neuroscience.

[95]  G. Buzsáki,et al.  NeuroGrid: recording action potentials from the surface of the brain , 2014, Nature Neuroscience.

[96]  D. Prince,et al.  Control mechanisms in cortical epileptogenic foci. "Surround" inhibition. , 1967, Archives of neurology.

[97]  S. Cash,et al.  Predicting neurosurgical outcomes in focal epilepsy patients using computational modelling , 2016, Brain : a journal of neurology.

[98]  Andrew J. Trevelyan,et al.  Cellular mechanisms of high frequency oscillations in epilepsy: On the diverse sources of pathological activities , 2011, Epilepsy Research.

[99]  Brian Litt,et al.  Human and automated detection of high-frequency oscillations in clinical intracranial EEG recordings , 2007, Clinical Neurophysiology.

[100]  C. Koch,et al.  The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes , 2012, Nature Reviews Neuroscience.

[101]  R. Miles,et al.  Cortical GABAergic excitation contributes to epileptic activities around human glioma , 2014, Science Translational Medicine.

[102]  Harald Sontheimer,et al.  Perineuronal nets decrease membrane capacitance of peritumoral fast spiking interneurons in a model of epilepsy , 2018, Nature Communications.

[103]  D. Spencer,et al.  The localizing value of depth electroencephalography in 32 patients with refractory epilepsy , 1982, Annals of neurology.

[104]  Massimo Avoli,et al.  High-frequency oscillations and focal seizures in epileptic rodents , 2019, Neurobiology of Disease.

[105]  Gian Luca Breschi,et al.  Synchronous Inhibitory Potentials Precede Seizure-Like Events in Acute Models of Focal Limbic Seizures , 2015, The Journal of Neuroscience.

[106]  Elliot H. Smith,et al.  Multivariate regression methods for estimating velocity of ictal discharges from human microelectrode recordings , 2017, Journal of neural engineering.

[107]  Tahra L. Eissa,et al.  Cross-scale effects of neural interactions during human neocortical seizure activity , 2017, Proceedings of the National Academy of Sciences.

[108]  Rafael Yuste,et al.  Role of inhibitory control in modulating spread of focal ictal activity , 2017, bioRxiv.

[109]  M. de Curtis,et al.  Fast activity at seizure onset is mediated by inhibitory circuits in the entorhinal cortex in vitro , 2008, Annals of neurology.

[110]  Guy M McKhann,et al.  Ictal high frequency oscillations distinguish two types of seizure territories in humans. , 2013, Brain : a journal of neurology.

[111]  Scott B. Wilson,et al.  Seizure detection: correlation of human experts , 2003, Clinical Neurophysiology.

[112]  E. Halgren,et al.  Single-neuron dynamics in human focal epilepsy , 2011, Nature Neuroscience.

[113]  R. Goodman,et al.  Cortical abnormalities in epilepsy revealed by local EEG synchrony , 2007, NeuroImage.

[114]  R. Traub,et al.  Cellular mechanism of neuronal synchronization in epilepsy. , 1982, Science.

[115]  Guy M. McKhann,et al.  Single unit action potentials in humans and the effect of seizure activity , 2015, Brain : a journal of neurology.

[116]  Rafael Yuste,et al.  Reliable and Elastic Propagation of Cortical Seizures In Vivo. , 2017, Cell reports.

[117]  T. Pedley Current Practice of Clinical Electroenceph‐alography , 1980, Neurology.

[118]  B. Litt,et al.  For Personal Use. Only Reproduce with Permission from the Lancet Publishing Group. Review Prediction of Epileptic Seizures Are Seizures Predictable? Prediction of Epileptic Seizures , 2022 .

[119]  Jan-Marino Ramirez,et al.  Synchrony levels during evoked seizure-like bursts in mouse neocortical slices. , 2003, Journal of neurophysiology.

[120]  J. Noebels,et al.  Spreading depolarization in the brainstem mediates sudden cardiorespiratory arrest in mouse SUDEP models , 2015, Science Translational Medicine.

[121]  Bernardo Rudy,et al.  CaV2.1 ablation in cortical interneurons selectively impairs fast‐spiking basket cells and causes generalized seizures , 2013, Annals of neurology.