CMOS Amperometric ADC With High Sensitivity, Dynamic Range and Power Efficiency for Air Quality Monitoring

Airborne pollutants are a leading cause of illness and mortality globally. Electrochemical gas sensors show great promise for personal air quality monitoring to address this worldwide health crisis. However, implementing miniaturized arrays of such sensors demands high performance instrumentation circuits that simultaneously meet challenging power, area, sensitivity, noise and dynamic range goals. This paper presents a new multi-channel CMOS amperometric ADC featuring pixel-level architecture for gas sensor arrays. The circuit combines digital modulation of input currents and an incremental ΣΔ ADC to achieve wide dynamic range and high sensitivity with very high power efficiency and compact size. Fabricated in 0.5 μm CMOS, the circuit was measured to have 164 dB cross-scale dynamic range, 100 fA sensitivity while consuming only 241 μW and 0.157 mm2 active area per channel. Electrochemical experiments with liquid and gas targets demonstrate the circuit's real-time response to a wide range of analyte concentrations.

[1]  Shantanu Chakrabartty,et al.  A Multichannel Femtoampere-Sensitivity Potentiostat Array for Biosensing Applications , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  G. Geelen,et al.  An inherently linear and compact MOST-only current division technique , 1992 .

[3]  Gino Bontempelli,et al.  Amperometric monitoring of ozone in gaseous media by gold electrodes supported on ion exchange membranes (solid polymer electrolytes) , 1990 .

[4]  M. D. Rooij,et al.  Electrochemical Methods: Fundamentals and Applications , 2003 .

[5]  Bruno Scrosati,et al.  Ionic-liquid materials for the electrochemical challenges of the future. , 2009, Nature materials.

[6]  Graham A. Jullien,et al.  Current-Mirror-Based Potentiostats for Three-Electrode Amperometric Electrochemical Sensors , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[7]  Abbas El Gamal,et al.  A Nyquist rate pixel level ADC for CMOS image sensors , 1998, Proceedings of the IEEE 1998 Custom Integrated Circuits Conference (Cat. No.98CH36143).

[8]  Jinfeng Yi,et al.  Power-error analysis of sensor array regression algorithms for gas mixture quantification in low-power microsystems , 2013, 2013 IEEE SENSORS.

[9]  Xiangqun Zeng,et al.  Methane-oxygen electrochemical coupling in an ionic liquid: a robust sensor for simultaneous quantification. , 2014, The Analyst.

[10]  Andrew J. Mason,et al.  A Robust Flexible Electrochemical Gas Sensor Using Room Temperature Ionic Liquid , 2013, IEEE Sensors Journal.

[11]  Richard G Compton,et al.  Reduction of carbon dioxide in 1-butyl-3-methylimidazolium acetate. , 2009, Chemical communications.

[12]  Eugenio Culurciello,et al.  Noise Analysis and Performance Comparison of Low Current Measurement Systems for Biomedical Applications , 2013, IEEE Transactions on Biomedical Circuits and Systems.

[13]  Andrew J. Mason,et al.  Single ion channel CMOS electrochemical instrument for high throughput recording arrays , 2015, 2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS).

[14]  Roman Genov,et al.  Chopper-Stabilized Bidirectional Current Acquisition Circuits for Electrochemical Amperometric Biosensors , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[15]  Richard G Compton,et al.  Toward membrane-free amperometric gas sensors: a microelectrode array approach. , 2010, Analytical chemistry.

[16]  Franco Maloberti Data Converters , 2007 .

[17]  Chang Ming Li,et al.  Highly Sensitive Nitric Oxide Sensing Using Three‐Dimensional Graphene/Ionic Liquid Nanocomposite , 2011 .

[18]  Gert Cauwenberghs,et al.  16-Channel Integrated Potentiostat for Distributed Neurochemical Sensing , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  Gabor C. Temes,et al.  Theory and applications of incremental ΔΣ converters , 2004, IEEE Trans. Circuits Syst. I Regul. Pap..

[20]  Olivier Morel,et al.  Cardiovascular effects of air pollution. , 2017, Archives of cardiovascular diseases.

[21]  Xiaoyi Mu,et al.  Low Power Multimode Electrochemical Gas Sensor Array System for Wearable Health and Safety Monitoring , 2014, IEEE Sensors Journal.

[22]  James D. Plummer,et al.  A High-Resolution Low-Power Incremental $\Sigma\Delta$ ADC With Extended Range for Biosensor Arrays , 2010, IEEE Journal of Solid-State Circuits.

[23]  Bernabé Linares-Barranco,et al.  On the design and characterization of femtoampere current-mode circuits , 2003, IEEE J. Solid State Circuits.

[24]  Richard G. Compton,et al.  Electroreduction of Sulfur Dioxide in Some Room-Temperature Ionic Liquids , 2008 .

[25]  Roman Genov,et al.  CMOS Neurotransmitter Microarray: 96-Channel Integrated Potentiostat With On-Die Microsensors , 2013, IEEE Transactions on Biomedical Circuits and Systems.

[26]  Jared Roseman,et al.  Single ion channel recordings with CMOS-anchored lipid membranes. , 2013, Nano letters.

[27]  李海涛 Li Hai-tao,et al.  Full differential CMOS interface circuit for closed-loop capacitive micro-accelerometers , 2011 .

[28]  Jae-Kyung Wee,et al.  A Small-Area Low-Power Current Readout Circuit Using Two-Stage Conversion Method for 64-Channel CNT Sensor Arrays , 2013, IEEE Transactions on Biomedical Circuits and Systems.

[29]  Andrew J. Mason,et al.  Power efficient instrumentation with 100 fA-sensitivity and 164 dB-dynamic range for wearable chronoamperometric gas sensor arrays , 2015, 2015 IEEE International Symposium on Circuits and Systems (ISCAS).

[30]  K.L. Shepard,et al.  Active CMOS Sensor Array for Electrochemical Biomolecular Detection , 2008, IEEE Journal of Solid-State Circuits.

[31]  Zhou Zhi-ping Noise analysis and characterization of a full differential CMOS interface circuit for capacitive closed-loop micro-accelerometer , 2010 .

[32]  W. Heineman,et al.  Laboratory techniques in electroanalytical chemistry , 1984 .

[33]  Peter C. Hauser,et al.  Amperometric Detection of Gaseous Formaldehydein the ppb Range , 2001 .

[34]  Moo Sung Chae,et al.  Design Optimization for Integrated Neural Recording Systems , 2008, IEEE Journal of Solid-State Circuits.

[35]  Peter C. Hauser,et al.  Electrochemical Sensor for the Detection of SO2 in the Low-ppb Range , 1999 .

[36]  Richard G. Compton,et al.  The Electrochemical Reduction of Hydrogen Sulfide on Platinum in Several Room Temperature Ionic Liquids , 2008 .

[37]  J. Reiter,et al.  Ionic liquid―polymer electrolyte for amperometric solid-state NO2 sensor , 2011 .

[38]  Xiangqun Zeng,et al.  Ionic liquids as electrolytes for the development of a robust amperometric oxygen sensor. , 2011, Analytical chemistry.

[39]  Franziska Hoffmann,et al.  Design Of Analog Cmos Integrated Circuits , 2016 .

[40]  Kartikeya Murari,et al.  VLSI Potentiostat Array With Oversampling Gain Modulation for Wide-Range Neurotransmitter Sensing , 2007, IEEE Transactions on Biomedical Circuits and Systems.

[41]  R. Jacob Baker,et al.  CMOS Circuit Design, Layout, and Simulation , 1997 .

[42]  Mansun Chan,et al.  A 200-Channel Area-Power-Efficient Chemical and Electrical Dual-Mode Acquisition IC for the Study of Neurodegenerative Diseases , 2016, IEEE Transactions on Biomedical Circuits and Systems.

[43]  P. Jurs,et al.  Detection of hazardous gases and vapors: pattern recognition analysis of data from an electrochemical sensor array , 1986 .