Air temperature and precipitation constraining the modelled wetland methane emissions in a boreal region in Northern Europe

Wetland methane responses to temperature and precipitation were studied in a boreal wetland-rich region in Northern Europe

[1]  Brian Brisco,et al.  Multi-Source EO for Dynamic Wetland Mapping and Monitoring in the Great Lakes Basin , 2021, Remote. Sens..

[2]  V. Brovkin,et al.  Expert assessment of future vulnerability of the global peatland carbon sink , 2020, Nature Climate Change.

[3]  V. Brovkin,et al.  Soil carbon sequestration simulated in CMIP6-LUMIP models: implications for climatic mitigation , 2020, Environmental Research Letters.

[4]  G. Krinner,et al.  Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change , 2020 .

[5]  E. Tuittila,et al.  Effect of the 2018 European drought on methane and carbon dioxide exchange of northern mire ecosystems , 2020, Philosophical Transactions of the Royal Society B.

[6]  Craig Mahoney,et al.  Automated SAR Image Thresholds for Water Mask Production in Alberta's Boreal Region , 2020, Remote. Sens..

[7]  Brian Brisco,et al.  Remote Sensing of Boreal Wetlands 1: Data Use for Policy and Management , 2020, Remote. Sens..

[8]  G. Janssens‑Maenhout,et al.  High resolution temporal profiles in the Emissions Database for Global Atmospheric Research , 2020, Scientific Data.

[9]  Tomoko Hasegawa,et al.  Harmonization of Global Land-Use Change and Management for the Period 850–2100 (LUH2) for CMIP6 , 2020 .

[10]  P. Bergamaschi,et al.  An observation-constrained assessment of the climate sensitivity and future trajectories of wetland methane emissions , 2020, Science Advances.

[11]  W. G. Strand,et al.  The Community Earth System Model Version 2 (CESM2) , 2020, Journal of Advances in Modeling Earth Systems.

[12]  Nathan Collier,et al.  The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty , 2019, Journal of Advances in Modeling Earth Systems.

[13]  W. Oechel,et al.  FLUXNET-CH4 Synthesis Activity : Objectives, Observations, and Future Directions , 2019 .

[14]  A. J. Hewitt,et al.  UKESM1: Description and Evaluation of the U.K. Earth System Model , 2019, Journal of Advances in Modeling Earth Systems.

[15]  T. Laurila,et al.  Interpreting eddy covariance data from heterogeneous Siberian tundra: land-cover-specific methane fluxes and spatial representativeness , 2019, Biogeosciences.

[16]  A. Bloom,et al.  Nongrowing season methane emissions–a significant component of annual emissions across northern ecosystems , 2018, Global change biology.

[17]  B. McGlynn,et al.  Landscape analysis of soil methane flux across complex terrain , 2018 .

[18]  V. Brovkin,et al.  HIMMELI v1.0: HelsinkI Model of MEthane buiLd-up and emIssion for peatlands , 2017 .

[19]  H. Joosten,et al.  The peatland map of Europe , 2017 .

[20]  A. Tsuruta,et al.  The CarbonTracker Data Assimilation Shell (CTDAS) v1.0 : Implementation and global carbon balance 2001-2015 , 2017 .

[21]  Jouni Pulliainen,et al.  Implications of boreal forest stand characteristics for X-band SAR flood mapping accuracy , 2016 .

[22]  R. Thompson,et al.  Methane fluxes in the high northern latitudes for 2005–2013 estimated using a Bayesian atmospheric inversion , 2016 .

[23]  S. Hagemann,et al.  Assessing various drought indicators in representing summer drought in boreal forests in Finland , 2015 .

[24]  P. Jones,et al.  Updated high‐resolution grids of monthly climatic observations – the CRU TS3.10 Dataset , 2014 .

[25]  Benjamin Smith,et al.  Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model , 2013 .

[26]  Jonathan Seaquist,et al.  Implications of accounting for land use in simulations of ecosystem carbon cycling in Africa , 2013 .

[27]  V. Brovkin,et al.  Representation of natural and anthropogenic land cover change in MPI‐ESM , 2013 .

[28]  Tobias Stacke,et al.  Impact of the soil hydrology scheme on simulated soil moisture memory , 2013, Climate Dynamics.

[29]  Philippe Bousquet,et al.  Constraining global methane emissions and uptake by ecosystems , 2011 .

[30]  J. Liski,et al.  Leaf litter decomposition-Estimates of global variability based on Yasso07 model , 2009, 0906.0886.

[31]  C. Prigent,et al.  Inundated wetland dynamics over boreal regions from remote sensing: the use of Topex‐Poseidon dual‐frequency radar altimeter observations , 2006 .

[32]  Dusanka Zupanski,et al.  An ensemble data assimilation system to estimate CO2 surface fluxes from atmospheric trace gas observations , 2005 .

[33]  P. Döll,et al.  Development and validation of a global database of lakes, reservoirs and wetlands , 2004 .

[34]  J. Sheng,et al.  Global distribution of methane emissions, emission trends, and OH concentrations and trends inferred from an inversion of GOSAT satellite data for 2010–2015 , 2019 .

[35]  J. Holden,et al.  PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis , 2018 .

[36]  S. Houweling,et al.  The two-way nested global chemistry-transport zoom model TM5: algorithm and applications , 2005 .