On Balanced Separators in Road Networks

The following algorithm partitions road networks surprisingly well: i sort the vertices by longitude or latitude, or some linear combination and ii compute the maximum flow from the first $$k$$ nodes forming the source to the last $$k$$ nodes forming the sink. Return the corresponding minimum cut as an edge separator or recurse until the resulting subgraphs are sufficiently small.

[1]  E. A. Dinic Algorithm for solution of a problem of maximal flow in a network with power estimation , 1970 .

[2]  Haim Kaplan,et al.  Maximum Flows by Incremental Breadth-First Search , 2011, ESA.

[3]  Andrew V. Goldberg,et al.  Implementation Challenge for Shortest Paths , 2008, Encyclopedia of Algorithms.

[4]  Yuval Rabani,et al.  On the Hardness of Approximating Multicut and Sparsest-Cut , 2005, Computational Complexity Conference.

[5]  Ben Strasser,et al.  Customizable Contraction Hierarchies , 2014, SEA.

[6]  N. Alon,et al.  A separator theorem for nonplanar graphs , 1990 .

[7]  Shang-Hua Teng,et al.  How Good is Recursive Bisection? , 1997, SIAM J. Sci. Comput..

[8]  Ignaz Rutter,et al.  Search-space size in contraction hierarchies , 2016, Theor. Comput. Sci..

[9]  Peter Sanders,et al.  Engineering Multilevel Graph Partitioning Algorithms , 2010, ESA.

[10]  Philip N. Klein,et al.  Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..

[11]  Dorothea Wagner,et al.  Engineering multilevel overlay graphs for shortest-path queries , 2009, JEAL.

[12]  Nisheeth K. Vishnoi,et al.  On partitioning graphs via single commodity flows , 2008, STOC.

[13]  A KhotSubhash,et al.  The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative-Type Metrics into ℓ1 , 2015 .

[14]  Greg N. Frederickson,et al.  Fast Algorithms for Shortest Paths in Planar Graphs, with Applications , 1987, SIAM J. Comput..

[15]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Jonah Sherman,et al.  Breaking the Multicommodity Flow Barrier for O(vlog n)-Approximations to Sparsest Cut , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[17]  Andrew V. Goldberg,et al.  Customizable Route Planning , 2011, SEA.

[18]  Hristo Djidjev,et al.  On-Line Algorithms for Shortest Path Problems on Planar Digraphs , 1996, WG.

[19]  Peter Sanders,et al.  Recent Advances in Graph Partitioning , 2013, Algorithm Engineering.

[20]  Peter Sanders,et al.  Distributed Time-Dependent Contraction Hierarchies , 2010, SEA.

[21]  Andrew V. Goldberg,et al.  An exact combinatorial algorithm for minimum graph bisection , 2014, Math. Program..

[22]  Christian Sommer,et al.  Shortest-path queries in static networks , 2014, ACM Comput. Surv..

[23]  Satish Rao,et al.  Planar graphs, negative weight edges, shortest paths, and near linear time , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[24]  Andrew V. Goldberg,et al.  Customizable Route Planning in Road Networks , 2017, Transp. Sci..

[25]  Andrew V. Goldberg,et al.  Beyond the flow decomposition barrier , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[26]  Norbert Zeh,et al.  Multiway Simple Cycle Separators and I/O-Efficient Algorithms for Planar Graphs , 2013, SODA.

[27]  Dorothea Wagner,et al.  High-Performance Multi-Level Routing , 2006, The Shortest Path Problem.

[28]  John R Gilbert,et al.  A Separator Theorem for Graphs of Bounded Genus , 1984, J. Algorithms.

[29]  Kevin J. Lang,et al.  An algorithm for improving graph partitions , 2008, SODA '08.

[30]  Philip N. Klein,et al.  Structured recursive separator decompositions for planar graphs in linear time , 2012, STOC '13.

[31]  Satish Rao,et al.  A Flow-Based Method for Improving the Expansion or Conductance of Graph Cuts , 2004, IPCO.

[32]  P. Ungar A Theorem on Planar Graphs , 1951 .

[33]  Satish Rao,et al.  Graph partitioning using single commodity flows , 2009, JACM.

[34]  Peter Sanders,et al.  Think Locally, Act Globally: Highly Balanced Graph Partitioning , 2013, SEA.

[35]  Aleksander Madry,et al.  Navigating Central Path with Electrical Flows: From Flows to Matchings, and Back , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[36]  David A. Bader,et al.  Benchmarking for Graph Clustering and Partitioning , 2014, Encyclopedia of Social Network Analysis and Mining.

[37]  Nisheeth K. Vishnoi,et al.  The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics into l1 , 2005, FOCS.

[38]  Peter Sanders,et al.  Distributed Evolutionary Graph Partitioning , 2011, ALENEX.

[39]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Frank Thomson Leighton,et al.  Graph bisection algorithms with good average case behavior , 1984, Comb..

[41]  Christian Sommer,et al.  Exact distance oracles for planar graphs , 2010, SODA.

[42]  Sanjeev Arora,et al.  A combinatorial, primal-dual approach to semidefinite programs , 2007, STOC '07.

[43]  Andrew V. Goldberg,et al.  Graph Partitioning with Natural Cuts , 2011, 2011 IEEE International Parallel & Distributed Processing Symposium.

[44]  Nisheeth K. Vishnoi,et al.  The unique games conjecture, integrality gap for cut problems and embeddability of negative type metrics into l/sub 1/ , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[45]  Ken-ichi Kawarabayashi,et al.  Linear-Space Approximate Distance Oracles for Planar, Bounded-Genus and Minor-Free Graphs , 2011, ICALP.

[46]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .