Stochastic spineless expression creates the retinal mosaic for colour vision

Drosophila colour vision is achieved by R7 and R8 photoreceptor cells present in every ommatidium. The fly retina contains two types of ommatidia, called ‘pale’ and ‘yellow’, defined by different rhodopsin pairs expressed in R7 and R8 cells. Similar to the human cone photoreceptors, these ommatidial subtypes are distributed stochastically in the retina. The choice between pale versus yellow ommatidia is made in R7 cells, which then impose their fate onto R8. Here we report that the Drosophila dioxin receptor Spineless is both necessary and sufficient for the formation of the ommatidial mosaic. A short burst of spineless expression at mid-pupation in a large subset of R7 cells precedes rhodopsin expression. In spineless mutants, all R7 and most R8 cells adopt the pale fate, whereas overexpression of spineless is sufficient to induce the yellow R7 fate. Therefore, this study suggests that the entire retinal mosaic required for colour vision is defined by the stochastic expression of a single transcription factor, Spineless.

[1]  E. Mazzoni,et al.  ‘One Receptor’ Rules in Sensory Neurons , 2005, Developmental Neuroscience.

[2]  Andrew Tomlinson,et al.  Patterning the peripheral retina of the fly: decoding a gradient. , 2003, Developmental cell.

[3]  J. Hurley,et al.  A thyroid hormone receptor that is required for the development of green cone photoreceptors , 2001, Nature Genetics.

[4]  E. Meyerowitz,et al.  An opsin gene that is expressed only in the R7 photoreceptor cell of Drosophila. , 1987, The EMBO journal.

[5]  Esteban O. Mazzoni,et al.  The Growth Regulators warts/lats and melted Interact in a Bistable Loop to Specify Opposite Fates in Drosophila R8 Photoreceptors , 2005, Cell.

[6]  K Kirschfeld,et al.  Fluorescence of photoreceptor cells observed in vivo. , 1981, Science.

[7]  L. Chittka,et al.  The evolution of color vision in insects. , 2001, Annual review of entomology.

[8]  I. Duncan,et al.  Direct control of antennal identity by the spineless-aristapedia gene of Drosophila , 1990, Molecular and General Genetics MGG.

[9]  L. Chadwell,et al.  Identification of a Novel Drosophila Opsin Reveals Specific Patterning of the R7 and R8 Photoreceptor Cells , 1996, Neuron.

[10]  Martin Heisenberg,et al.  The rôle of retinula cell types in visual behavior ofDrosophila melanogaster , 2004, Journal of comparative physiology.

[11]  Andrey Rzhetsky,et al.  A Spatial Map of Olfactory Receptor Expression in the Drosophila Antenna , 1999, Cell.

[12]  D. Papatsenko,et al.  A new rhodopsin in R 8 photoreceptors of Drosophila : evidence for coordinate expression with Rh 3 in R 7 cells , 1997 .

[13]  Richard H. White,et al.  The retina of Manduca sexta: rhodopsin expression, the mosaic of green-, blue- and UV-sensitive photoreceptors, and regional specialization , 2003, Journal of Experimental Biology.

[14]  I. Duncan,et al.  Control of distal antennal identity and tarsal development in Drosophila by spineless-aristapedia, a homolog of the mammalian dioxin receptor. , 1998, Genes & development.

[15]  K Kirschfeld,et al.  Ectopic expression of ultraviolet-rhodopsins in the blue photoreceptor cells of Drosophila: visual physiology and photochemistry of transgenic animals , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  G. Rubin,et al.  Analysis of cis-acting requirements of the Rh3 and Rh4 genes reveals a bipartite organization to rhodopsin promoters in Drosophila melanogaster. , 1990, Genes & development.

[17]  Leo Maurice Hurvich,et al.  Color vision , 1981 .

[18]  K. Touhara,et al.  [A molecular basis for odorant recognition: olfactory receptor pharmacology]. , 2004, Nihon yakurigaku zasshi. Folia pharmacologica Japonica.

[19]  Richard S. Mann,et al.  Control of antennal versus leg development in Drosophila , 1998, Nature.

[20]  T. Schwarz,et al.  A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. , 1999, Genetics.

[21]  Karl R Gegenfurtner,et al.  Color vision. , 2003, Annual review of neuroscience.

[22]  G. Rubin,et al.  A second opsin gene expressed in the ultraviolet-sensitive R7 photoreceptor cells of Drosophila melanogaster , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  D. Papatsenko,et al.  Otd/Crx, a dual regulator for the specification of ommatidia subtypes in the Drosophila retina. , 2003, Developmental cell.

[24]  David Williams,et al.  The arrangement of the three cone classes in the living human eye , 1999, Nature.

[25]  M. Ward,et al.  The spineless-aristapedia and tango bHLH-PAS proteins interact to control antennal and tarsal development in Drosophila. , 1999, Development.

[26]  Jean Bennett,et al.  Mutation of a nuclear receptor gene, NR2E3, causes enhanced S cone syndrome, a disorder of retinal cell fate , 2000, Nature Genetics.

[27]  R. Axel,et al.  A novel multigene family may encode odorant receptors: A molecular basis for odor recognition , 1991, Cell.

[28]  D. Papatsenko,et al.  A new rhodopsin in R8 photoreceptors of Drosophila: evidence for coordinate expression with Rh3 in R7 cells. , 1997, Development.

[29]  J. C. Li,et al.  Development in DROSOPHILA MELANOGASTER. , 1927, Genetics.

[30]  G. Rubin,et al.  Glass encodes a site-specific DNA-binding protein that is regulated in response to positional signals in the developing Drosophila eye. , 1991, Genes & development.

[31]  Thomas Labhart,et al.  Homothorax Switches Function of Drosophila Photoreceptors from Color to Polarized Light Sensors , 2003, Cell.

[32]  Claude Desplan,et al.  Building a retinal mosaic: cell-fate decision in the fly eye. , 2004, Trends in cell biology.

[33]  Liqun Luo,et al.  Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis , 1999, Neuron.

[34]  Martin Giurfa,et al.  Spectral heterogeneity of honeybee ommatidia , 2005, Naturwissenschaften.

[35]  S. Zipursky,et al.  The Eye-Specification Proteins So and Eya Form a Complex and Regulate Multiple Steps in Drosophila Eye Development , 1997, Cell.

[36]  M. Bate,et al.  The development of Drosophila melanogaster , 1993 .

[37]  U. Wolfrum,et al.  Molecular cloning of Drosophila Rh6 rhodopsin: the visual pigment of a subset of R8 photoreceptor cells 1 , 1997, FEBS letters.

[38]  G. Rubin,et al.  Isolation and structure of a rhodopsin gene from D. melanogaster , 1985, Cell.

[39]  G. Rubin,et al.  Analysis of genetic mosaics in developing and adult Drosophila tissues. , 1993, Development.

[40]  Reinhard Wolf,et al.  Polarization sensitivity of course control inDrosophila melanogaster , 1980, Journal of comparative physiology.

[41]  S. Wada,et al.  Spezielle randzonale ommatidien der fliegen (diptera : brachycera): architektur und verteilung in den komplexauaen , 1974, Zeitschrift für Morphologie der Tiere.

[42]  Thomas Labhart,et al.  A behavioural study of polarization vision in the fly, Musca domestica , 1990, Journal of Comparative Physiology A.

[43]  A. Huber,et al.  Patterning of the R7 and R8 photoreceptor cells of Drosophila: evidence for induced and default cell-fate specification. , 1999, Development.

[44]  D M Sherry,et al.  Identification and distribution of photoreceptor subtypes in the neotenic tiger salamander retina , 1998, Visual Neuroscience.

[45]  A. Huber,et al.  Rhodopsin patterning in central photoreceptor cells of the blowfly Calliphora vicina: cloning and characterization of Calliphora rhodopsins Rh3, Rh5 and Rh6 , 2005, Journal of Experimental Biology.

[46]  G. V. Miller,et al.  Phototaxis in Drosophila: R1–6 input and interaction among ocellar and compound eye receptors , 1981 .