A Material Showing Colossal Positive and Negative Volumetric Thermal Expansion with Hysteretic Magnetic Transition.

It is an ongoing challenge to design and synthesize magnetic materials that undergo colossal thermal expansion and that possess potential applications as microscale or nanoscale actuators with magnetic functionality. A paramagnetic metallocyanate building block was used to construct a cyanide-bridged Fe-Co complex featuring both positive and negative colossal volumetric thermal-expansion behavior. A detailed study revealed that metal-to-metal charge transfer between 180 and 240 K induced a volumetric thermal expansion coefficient of 1498 MK-1 accompanied with hysteretic spin transition. Rotation of the magnetic building blocks induced change of π⋅⋅⋅π interactions, resulting in a negative volume expansion coefficient of -489 MK-1 , and another hysteretic magnetic transition between 300 and 350 K. This work presents a strategy for incorporating both colossal positive and negative volumetric thermal expansion with shape and magnetic memory effects in a material.

[1]  M. Scheffler,et al.  ANOMALOUSLY LARGE THERMAL EXPANSION AT THE (0001) SURFACE OF BERYLLIUM WITHOUT OBSERVABLE INTERLAYER ANHARMONICITY , 1998 .

[2]  Xiao-Ming Chen,et al.  Supramolecular-jack-like guest in ultramicroporous crystal for exceptional thermal expansion behaviour , 2015, Nature Communications.

[3]  John Ewing,et al.  'Open access' will not be open to everyone , 2003, Nature.

[4]  K. Hashimoto,et al.  Charge-transfer phase transition and zero thermal expansion in caesium manganese hexacyanoferrates. , 2006, Dalton transactions.

[5]  Elena Boldyreva,et al.  Mechanically Responsive Molecular Crystals. , 2015, Chemical reviews.

[6]  A. Grabar,et al.  Thermal expansion of Sn2P2S6 crystals , 2009 .

[7]  A. Fujishima,et al.  Photoinduced Magnetization of a Cobalt-Iron Cyanide , 1996, Science.

[8]  Yan-juan Zhang,et al.  Water-switching of spin transitions induced by metal-to-metal charge transfer in a microporous framework. , 2010, Angewandte Chemie.

[9]  K. Yoshizawa,et al.  Bistability of magnetization without spin-transition in a high-spin cobalt(II) complex due to angular momentum quenching. , 2009, Journal of the American Chemical Society.

[10]  A. Dei Photomagnetische Effekte in Polycyanometallaten: Entsteht aus chemischer Grundlagenforschung eine interessante zukünftige Technik? , 2005 .

[11]  M. Calleja,et al.  Colossal Positive and Negative Thermal Expansion in the Framework Material Ag3[Co(CN)6] , 2008, Science.

[12]  Himanshu Aggarwal,et al.  Anomalous Anisotropic Thermal Expansion in a One-Dimensional Coordination Polymer Driven by Conformational Flexibility. , 2015, Inorganic chemistry.

[13]  J. Deng,et al.  Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications. , 2015, Chemical Society reviews.

[14]  Ce Sun,et al.  Zero thermal expansion in PbTiO3-based perovskites. , 2008, Journal of the American Chemical Society.

[15]  S. Margadonna,et al.  Temperature-induced valence transition and associated lattice collapse in samarium fulleride , 2003, Nature.

[16]  Andrew L. Goodwin,et al.  PASCal: a principal axis strain calculator for thermal expansion and compressibility determination , 2012, 1204.3007.

[17]  Christopher Viney,et al.  Large negative thermal expansion of a polymer driven by a submolecular conformational change. , 2013, Nature chemistry.

[18]  K. Yoshizawa,et al.  Molecular motor-driven abrupt anisotropic shape change in a single crystal of a Ni complex. , 2014, Nature chemistry.

[19]  M. Kanatzidis,et al.  Temperature-induced abrupt volume inflation in the mixed-valence ternary Zintl phase Yb8Ge3Sb5. , 2005, Chemical communications.

[20]  V. Heine,et al.  Rigid unit modes and the negative thermal expansion in ZrW2O8 , 1997 .

[21]  V. Michaelis,et al.  Local and average structure in zinc cyanide: toward an understanding of the atomistic origin of negative thermal expansion. , 2013, Journal of the American Chemical Society.

[22]  Kevin S. Knight,et al.  Negative Linear Compressibility and Massive Anisotropic Thermal Expansion in Methanol Monohydrate , 2011, Science.

[23]  Cheng Yang,et al.  Colossal negative thermal expansion with an extended temperature interval covering room temperature in fine-powdered Mn0.98CoGe , 2016 .

[24]  R. Sessoli Magnetic clusters: Spinning into control , 2010 .

[25]  A. Dei Photomagnetic effects in polycyanometallate compounds: an intriguing future chemically based technology? , 2005, Angewandte Chemie.

[26]  R. Clérac,et al.  Switchable Fe/Co Prussian blue networks and molecular analogues. , 2016, Chemical Society reviews.

[27]  J. Attfield,et al.  Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer , 2011, Nature communications.

[28]  Leonard J Barbour,et al.  Exceptionally large positive and negative anisotropic thermal expansion of an organic crystalline material. , 2010, Nature materials.

[29]  K. Chapman,et al.  Pressure enhancement of negative thermal expansion behavior and induced framework softening in zinc cyanide. , 2007, Journal of the American Chemical Society.

[30]  V. K. Peterson,et al.  Negative thermal expansion in the metal-organic framework material Cu3(1,3,5-benzenetricarboxylate)2. , 2008, Angewandte Chemie.

[31]  J. Gimzewski,et al.  Electronics using hybrid-molecular and mono-molecular devices , 2000, Nature.

[32]  Andreas Schneemann,et al.  Massive Anisotropic Thermal Expansion and Thermo‐Responsive Breathing in Metal–Organic Frameworks Modulated by Linker Functionalization , 2013 .

[33]  M. Kanatzidis,et al.  Zero thermal expansion in YbGaGe due to an electronic valence transition , 2003, Nature.

[34]  Tomoyuki Ishikawa,et al.  Rapid and reversible shape changes of molecular crystals on photoirradiation , 2007, Nature.

[35]  M. Azuma,et al.  Temperature-induced A–B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 perovskite , 2009, Nature.