A Material Showing Colossal Positive and Negative Volumetric Thermal Expansion with Hysteretic Magnetic Transition.
暂无分享,去创建一个
Liang Zhao | Tao Liu | Osamu Sato | Shinya Hayami | Ji-Xiang Hu | Liang Zhao | S. Hayami | O. Sato | Yang Xu | Yin-Shan Meng | Yinshan Meng | Tao Liu | Jixiang Hu | Yang Xu
[1] M. Scheffler,et al. ANOMALOUSLY LARGE THERMAL EXPANSION AT THE (0001) SURFACE OF BERYLLIUM WITHOUT OBSERVABLE INTERLAYER ANHARMONICITY , 1998 .
[2] Xiao-Ming Chen,et al. Supramolecular-jack-like guest in ultramicroporous crystal for exceptional thermal expansion behaviour , 2015, Nature Communications.
[3] John Ewing,et al. 'Open access' will not be open to everyone , 2003, Nature.
[4] K. Hashimoto,et al. Charge-transfer phase transition and zero thermal expansion in caesium manganese hexacyanoferrates. , 2006, Dalton transactions.
[5] Elena Boldyreva,et al. Mechanically Responsive Molecular Crystals. , 2015, Chemical reviews.
[6] A. Grabar,et al. Thermal expansion of Sn2P2S6 crystals , 2009 .
[7] A. Fujishima,et al. Photoinduced Magnetization of a Cobalt-Iron Cyanide , 1996, Science.
[8] Yan-juan Zhang,et al. Water-switching of spin transitions induced by metal-to-metal charge transfer in a microporous framework. , 2010, Angewandte Chemie.
[9] K. Yoshizawa,et al. Bistability of magnetization without spin-transition in a high-spin cobalt(II) complex due to angular momentum quenching. , 2009, Journal of the American Chemical Society.
[10] A. Dei. Photomagnetische Effekte in Polycyanometallaten: Entsteht aus chemischer Grundlagenforschung eine interessante zukünftige Technik? , 2005 .
[11] M. Calleja,et al. Colossal Positive and Negative Thermal Expansion in the Framework Material Ag3[Co(CN)6] , 2008, Science.
[12] Himanshu Aggarwal,et al. Anomalous Anisotropic Thermal Expansion in a One-Dimensional Coordination Polymer Driven by Conformational Flexibility. , 2015, Inorganic chemistry.
[13] J. Deng,et al. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications. , 2015, Chemical Society reviews.
[14] Ce Sun,et al. Zero thermal expansion in PbTiO3-based perovskites. , 2008, Journal of the American Chemical Society.
[15] S. Margadonna,et al. Temperature-induced valence transition and associated lattice collapse in samarium fulleride , 2003, Nature.
[16] Andrew L. Goodwin,et al. PASCal: a principal axis strain calculator for thermal expansion and compressibility determination , 2012, 1204.3007.
[17] Christopher Viney,et al. Large negative thermal expansion of a polymer driven by a submolecular conformational change. , 2013, Nature chemistry.
[18] K. Yoshizawa,et al. Molecular motor-driven abrupt anisotropic shape change in a single crystal of a Ni complex. , 2014, Nature chemistry.
[19] M. Kanatzidis,et al. Temperature-induced abrupt volume inflation in the mixed-valence ternary Zintl phase Yb8Ge3Sb5. , 2005, Chemical communications.
[20] V. Heine,et al. Rigid unit modes and the negative thermal expansion in ZrW2O8 , 1997 .
[21] V. Michaelis,et al. Local and average structure in zinc cyanide: toward an understanding of the atomistic origin of negative thermal expansion. , 2013, Journal of the American Chemical Society.
[22] Kevin S. Knight,et al. Negative Linear Compressibility and Massive Anisotropic Thermal Expansion in Methanol Monohydrate , 2011, Science.
[23] Cheng Yang,et al. Colossal negative thermal expansion with an extended temperature interval covering room temperature in fine-powdered Mn0.98CoGe , 2016 .
[24] R. Sessoli. Magnetic clusters: Spinning into control , 2010 .
[25] A. Dei. Photomagnetic effects in polycyanometallate compounds: an intriguing future chemically based technology? , 2005, Angewandte Chemie.
[26] R. Clérac,et al. Switchable Fe/Co Prussian blue networks and molecular analogues. , 2016, Chemical Society reviews.
[27] J. Attfield,et al. Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer , 2011, Nature communications.
[28] Leonard J Barbour,et al. Exceptionally large positive and negative anisotropic thermal expansion of an organic crystalline material. , 2010, Nature materials.
[29] K. Chapman,et al. Pressure enhancement of negative thermal expansion behavior and induced framework softening in zinc cyanide. , 2007, Journal of the American Chemical Society.
[30] V. K. Peterson,et al. Negative thermal expansion in the metal-organic framework material Cu3(1,3,5-benzenetricarboxylate)2. , 2008, Angewandte Chemie.
[31] J. Gimzewski,et al. Electronics using hybrid-molecular and mono-molecular devices , 2000, Nature.
[32] Andreas Schneemann,et al. Massive Anisotropic Thermal Expansion and Thermo‐Responsive Breathing in Metal–Organic Frameworks Modulated by Linker Functionalization , 2013 .
[33] M. Kanatzidis,et al. Zero thermal expansion in YbGaGe due to an electronic valence transition , 2003, Nature.
[34] Tomoyuki Ishikawa,et al. Rapid and reversible shape changes of molecular crystals on photoirradiation , 2007, Nature.
[35] M. Azuma,et al. Temperature-induced A–B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 perovskite , 2009, Nature.