Exploring H2O Prominence in Reflection Spectra of Cool Giant Planets

The H2O abundance of a planetary atmosphere is a powerful indicator of formation conditions. Inferring H2O in the solar system giant planets is challenging, due to condensation depleting the upper atmosphere of water vapour. Substantially warmer hot Jupiter exoplanets readily allow detections of H2O via transmission spectroscopy, but such signatures are often diminished by the presence of clouds made of other species. In contrast, highly scattering H2O clouds can brighten planets in reflected light, enhancing molecular signatures. Here, we present an extensive parameter space survey of the prominence of H2O absorption features in reflection spectra of cool (Teff ~20m/s^2, fsed>~3, m ~180K display prominent H2O features embedded in the Rayleigh slope from 0.4-0.73um. High fsed enhances H2O features around 0.94um, and enables them to be detected at lower temperatures. High m results in dampened H2O absorption features, due to H2O vapour condensing to form bright optically thick clouds that dominate the continuum. We verify these trends via self-consistent modelling of the low gravity exoplanet HD 192310c, revealing that its reflection spectrum is expected to be dominated by H2O absorption from 0.4-0.73um for m<~10xsolar. Our results demonstrate that H2O is manifestly detectable in reflected light spectra of cool giant planets only marginally warmer than Jupiter, providing an avenue to directly constrain the C/O and O/H ratios of a hitherto unexplored population of exoplanetary atmospheres.

[1]  Wesley A. Traub,et al.  DEVELOPING ATMOSPHERIC RETRIEVAL METHODS FOR DIRECT IMAGING SPECTROSCOPY OF GAS GIANTS IN REFLECTED LIGHT. I. METHANE ABUNDANCES AND BASIC CLOUD PROPERTIES , 2016, 1604.05370.

[2]  Arden L. Buck,et al.  New Equations for Computing Vapor Pressure and Enhancement Factor , 1981 .

[3]  Edwin A. Bergin,et al.  THE EFFECTS OF SNOWLINES ON C/O IN PLANETARY ATMOSPHERES , 2011, 1110.5567.

[4]  S. Warren,et al.  Optical constants of ice from the ultraviolet to the microwave. , 1984, Applied optics.

[5]  Nikole K. Lewis,et al.  HAT-P-26b: A Neptune-mass exoplanet with a well-constrained heavy element abundance , 2017, Science.

[6]  T. Guillot,et al.  A Nongray Theory of Extrasolar Giant Planets and Brown Dwarfs , 1997, astro-ph/9705201.

[7]  D. Saumon,et al.  NEW H2 COLLISION-INDUCED ABSORPTION AND NH3 OPACITY AND THE SPECTRA OF THE COOLEST BROWN DWARFS , 2012, 1202.6293.

[8]  Kevin France,et al.  Initial technology assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) mission concept study , 2016, Astronomical Telescopes + Instrumentation.

[9]  Nikku Madhusudhan,et al.  NEBULAR WATER DEPLETION AS THE CAUSE OF JUPITER'S LOW OXYGEN ABUNDANCE , 2012, 1204.3887.

[10]  M. Marley,et al.  Line and Mean Opacities for Ultracool Dwarfs and Extrasolar Planets , 2007, 0706.2374.

[11]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[12]  Richard S. Freedman,et al.  A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres , 2007, 0710.2558.

[13]  D. Saumon,et al.  NEGLECTED CLOUDS IN T AND Y DWARF ATMOSPHERES , 2012, 1206.4313.

[14]  Sara Seager,et al.  Exoplanet Atmospheres: Physical Processes , 2010 .

[15]  Tyler Robinson,et al.  Atmospheric Retrieval for Direct Imaging Spectroscopy of Gas Giants in Reflected Light. II. Orbital Phase and Planetary Radius , 2016, 1612.00342.

[16]  T. Guillot,et al.  Atmospheric, Evolutionary, and Spectral Models of the Brown Dwarf Gliese 229 B , 1996, Science.

[17]  T. Owen,et al.  Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter , 2004 .

[18]  Mark S. Marley,et al.  Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits , 2006 .

[19]  T. Encrenaz,et al.  A comparison of the atmospheres of Jupiter and Saturn: deep atmospheric composition, cloud structure, vertical mixing, and origin. , 1999, Planetary and space science.

[20]  Sara Seager,et al.  A PRECISE WATER ABUNDANCE MEASUREMENT FOR THE HOT JUPITER WASP-43b , 2014, 1410.2255.

[21]  The Juno Mission , 2010, Proceedings of the International Astronomical Union.

[22]  J. Martonchik,et al.  Optical properties of NH3 ice from the far infrared to the near ultraviolet. , 1984, Applied optics.

[23]  Joanna K. Barstow,et al.  CLOUDS ON THE HOT JUPITER HD189733b: CONSTRAINTS FROM THE REFLECTION SPECTRUM , 2014, 1403.6664.

[24]  Olivier Guyon,et al.  The Habitable Exoplanet (HabEx) Imaging Mission: preliminary science drivers and technical requirements , 2016, Astronomical Telescopes + Instrumentation.

[25]  Roxana Lupu,et al.  FORWARD AND INVERSE MODELING OF THE EMISSION AND TRANSMISSION SPECTRUM OF GJ 436B: INVESTIGATING METAL ENRICHMENT, TIDAL HEATING, AND CLOUDS , 2016, 1610.07632.

[26]  David A. Golimowski,et al.  THE 0.8–14.5 μm SPECTRA OF MID-L TO MID-T DWARFS: DIAGNOSTICS OF EFFECTIVE TEMPERATURE, GRAIN SEDIMENTATION, GAS TRANSPORT, AND SURFACE GRAVITY , 2009, 0906.2991.

[27]  Jonathan J. Fortney,et al.  The effect of condensates on the characterization of transiting planet atmospheres with transmission spectroscopy , 2005, astro-ph/0509292.

[28]  C P McKay,et al.  Thermal structure of Uranus' atmosphere. , 1999, Icarus.

[29]  V. Eshleman,et al.  The Atmosphere of Jupiter: An Analysis of Voyager Radio Occultation Measurements. , 1981 .

[30]  Mark S. Marley,et al.  Synthetic Spectra and Colors of Young Giant Planet Atmospheres: Effects of Initial Conditions and Atmospheric Metallicity , 2008, 0805.1066.

[31]  S. Albrecht,et al.  Ground-based detection of sodium in the transmission spectrum of exoplanet HD209458b , 2008, 0805.0789.

[32]  Nikku Madhusudhan,et al.  Exoplanetary Atmospheres—Chemistry, Formation Conditions, and Habitability , 2016, Space Science Reviews.

[33]  J. Lunine,et al.  Reflected Spectra and Albedos of Extrasolar Giant Planets. I. Clear and Cloudy Atmospheres , 1998, astro-ph/9810073.

[34]  Nikole K. Lewis,et al.  An ultrahot gas-giant exoplanet with a stratosphere , 2017, Nature.

[35]  J. Wheeler,et al.  THE ROLE OF THE MAGNETOROTATIONAL INSTABILITY IN THE SUN , 2014, 1407.4654.

[36]  N. Santos,et al.  Near-infrared transmission spectrum of the warm-uranus GJ 3470b with the Wide Field Camera-3 on the Hubble Space Telescope , 2014, 1405.1056.

[37]  Simon Albrecht,et al.  The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b , 2010, Nature.

[38]  D. Saumon,et al.  WATER CLOUDS IN Y DWARFS AND EXOPLANETS , 2014, 1404.0005.

[39]  Adam Burrows,et al.  ALBEDO AND REFLECTION SPECTRA OF EXTRASOLAR GIANT PLANETS , 1999 .

[40]  J. Fortney,et al.  GTC OSIRIS transiting exoplanet atmospheric survey: detection of potassium in HAT-P-1b from narrow-band spectrophotometry , 2015, 1503.07165.

[41]  JOHN S. Lewis The clouds of Jupiter and the NH3—H2O and NH3—H2S systems , 1969 .

[42]  Drake Deming,et al.  A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b , 2014, Nature.

[43]  B. Benneke,et al.  Strict Upper Limits on the Carbon-to-Oxygen Ratios of Eight Hot Jupiters from Self-Consistent Atmospheric Retrieval , 2015, 1504.07655.

[44]  K. Cahoy,et al.  EXOPLANET ALBEDO SPECTRA AND COLORS AS A FUNCTION OF PLANET PHASE, SEPARATION, AND METALLICITY , 2010, 1009.3071.

[45]  M. Marley,et al.  Sulfur Hazes in Giant Exoplanet Atmospheres: Impacts on Reflected Light Spectra , 2017, 1701.00318.

[46]  Drake Deming,et al.  Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet , 2014, Nature.

[47]  S. Seager,et al.  Exoplanet Atmospheres , 2010 .

[48]  Kerri Cahoy,et al.  THERMAL EMISSION AND REFLECTED LIGHT SPECTRA OF SUPER EARTHS WITH FLAT TRANSMISSION SPECTRA , 2015, 1511.01492.

[49]  Adam Burrows,et al.  Phase Functions and Light Curves of Wide-Separation Extrasolar Giant Planets , 2005 .

[50]  Drake Deming,et al.  Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.

[51]  Carl Sagan,et al.  Physical properties of the particles composing the Martian dust storm of 1971–1972 , 1977 .

[52]  Andrew S. Ackerman,et al.  Precipitating Condensation Clouds in Substellar Atmospheres , 2001, astro-ph/0103423.

[53]  D. Saumon,et al.  The Evolution of L and T Dwarfs in Color-Magnitude Diagrams , 2008, 0808.2611.

[54]  Edward J. Wollack,et al.  Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report , 2015, 1503.03757.

[55]  A. Burrows Scientific Return of Coronagraphic Exoplanet Imaging and Spectroscopy Using WFIRST , 2014, 1412.6097.

[56]  S. Seager,et al.  Clouds and chemistry: Ultracool dwarf atmospheric properties from optical and infrared colors , 2002 .

[57]  Laurence S. Rothman,et al.  New section of the HITRAN database: Collision-induced absorption (CIA) , 2012 .

[58]  Bruce A. Macintosh,et al.  Detection of Carbon Monoxide and Water Absorption Lines in an Exoplanet Atmosphere , 2013, Science.

[59]  P. Gierasch,et al.  Energy conversion processes in the outer planets. , 1985 .

[60]  Jason J. Wang,et al.  Discovery and spectroscopy of the young jovian planet 51 Eri b with the Gemini Planet Imager , 2015, Science.

[61]  Adam Burrows,et al.  Spectra and Diagnostics for the Direct Detection of Wide-Separation Extrasolar Giant Planets , 2004, astro-ph/0401522.

[62]  E. Karkoschka Methane, Ammonia, and Temperature Measurements of the Jovian Planets and Titan from CCD–Spectrophotometry , 1998 .

[63]  Antonio Claret,et al.  Detection of titanium oxide in the atmosphere of a hot Jupiter , 2017, Nature.

[64]  R. A. West,et al.  JUPITER’S PHASE VARIATIONS FROM CASSINI: A TESTBED FOR FUTURE DIRECT-IMAGING MISSIONS , 2016, 1610.07679.

[65]  E. Karkoschka Spectrophotometry of the Jovian Planets and Titan at 300- to 1000-nm Wavelength: The Methane Spectrum , 1994 .

[66]  Drake Deming,et al.  A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion , 2016, Nature.

[67]  Nikku Madhusudhan,et al.  Signatures of Nitrogen Chemistry in Hot Jupiter Atmospheres , 2017, 1711.00467.

[68]  S. Seager,et al.  A TEMPERATURE AND ABUNDANCE RETRIEVAL METHOD FOR EXOPLANET ATMOSPHERES , 2009, 0910.1347.

[69]  C. McKay,et al.  The thermal structure of Titan's atmosphere. , 1989, Icarus.

[70]  D. Queloz,et al.  The HARPS search for Earth-like planets in the habitable zone - I. Very low-mass planets around HD 20794, HD 85512, and HD 192310 , 2011, 1108.3447.

[71]  M. Bonnefoy,et al.  HELIOS–RETRIEVAL: An Open-source, Nested Sampling Atmospheric Retrieval Code; Application to the HR 8799 Exoplanets and Inferred Constraints for Planet Formation , 2016, 1610.03216.

[72]  C. McKay,et al.  Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres , 1989 .

[73]  D. Crisp,et al.  A SYSTEMATIC RETRIEVAL ANALYSIS OF SECONDARY ECLIPSE SPECTRA. I. A COMPARISON OF ATMOSPHERIC RETRIEVAL TECHNIQUES , 2013, 1304.5561.

[74]  Bruce Macintosh,et al.  SIMULTANEOUS DETECTION OF WATER, METHANE, AND CARBON MONOXIDE IN THE ATMOSPHERE OF EXOPLANET HR 8799 b , 2015, 1503.03539.

[75]  Adam Burrows,et al.  Characterization of Exoplanet Atmospheres with the Optical Coronagraph on WFIRST , 2018, The Astronomical Journal.

[76]  Mark Clampin,et al.  INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE HUBBLE SPACE TELESCOPE , 2013, 1302.1141.

[77]  J. Tennyson,et al.  A variationally computed line list for hot NH3 , 2010, 1011.1569.

[78]  Drake Deming,et al.  H2O ABUNDANCES IN THE ATMOSPHERES OF THREE HOT JUPITERS , 2014, 1407.6054.