Organization of local axon collaterals of efferent projection neurons in rat visual cortex

We have studied the laminar origins of local long‐range connections within rat primary visual cortex (area 17), by using retrograde tracing of nerve cell bodies with fluorescent markers. Injections throughout the thickness of cortex produce distinct laminar labeling patterns which indicate that a substantial number of cells in layers 2/3, 5, and 6 have wide local axon collateral arbors, while the local arbors of layer 4 cells are much narrower. Double labeling experiments which combined area 17 injections with injections into different projection targets of area 17 (opposite area 17, area 18a, and area 18b) show that many cortico‐cortically projecting cells make widespread projections within area 17. In contrast, the overwhelming majority of subcortically projecting cells have narrow collateral arbors within area 17.

[1]  G. Blasdel,et al.  Intrinsic connections of macaque striate cortex: axonal projections of cells outside lamina 4C , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  L C Katz,et al.  Local circuitry of identified projection neurons in cat visual cortex brain slices , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  J Allman,et al.  Direction- and Velocity-Specific Responses from beyond the Classical Receptive Field in the Middle Temporal Visual Area (MT) , 1985, Perception.

[4]  R. Mooney,et al.  The structural and functional characteristics of striate cortical neurons that innervate the superior colliculus and lateral posterior nucleus in hamster , 1986, Neuroscience.

[5]  A. Cowey,et al.  Interlaminar and lateral excitatory amino acid connections in the striate cortex of monkey , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  B. Vogt,et al.  Direct connections of rat visual cortex with sensory, motor, and association cortices , 1984, The Journal of comparative neurology.

[7]  A. L. Humphrey,et al.  Anatomical banding of intrinsic connections in striate cortex of tree shrews (Tupaia glis) , 1982, The Journal of comparative neurology.

[8]  R. Malach,et al.  Development of visual callosal connections in neonatally enucleated rats , 1987, The Journal of comparative neurology.

[9]  A. Mackay-Sim,et al.  Cortical projections to visual centres in the rat: An HRP study , 1981, Brain Research.

[10]  K. Rockland,et al.  Terminal arbors of individual “Feedback” axons projecting from area V2 to V1 in the macaque monkey: A study using immunohistochemistry of anterogradely transported Phaseolus vulgaris‐leucoagglutinin , 1989, The Journal of comparative neurology.

[11]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[12]  Charles D. Gilbert,et al.  The Role of Horizontal Connections in Generating Long Receptive Fields in the Cat Visual Cortex , 1989, The European journal of neuroscience.

[13]  A. Pearlman,et al.  Receptive-field properties of transcallosal visual cortical neurons in the normal and reeler mouse. , 1983, Journal of neurophysiology.

[14]  V. Montero Comparative Studies on the Visual Cortex , 1981 .

[15]  J. Bolz,et al.  Morphology of identified projection neurons in layer 5 of rat visual cortex , 1988, Neuroscience Letters.

[16]  C. Blakemore,et al.  Functional organization in the visual cortex of the golden hamster , 1976, The Journal of comparative neurology.

[17]  P. Lennie Parallel visual pathways: A review , 1980, Vision Research.

[18]  C. Gilbert,et al.  Generation of end-inhibition in the visual cortex via interlaminar connections , 1986, Nature.

[19]  C. Gilbert Microcircuitry of the visual cortex. , 1983, Annual review of neuroscience.

[20]  A. Burkhalter,et al.  Organization of corticocortical connections in human visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[21]  U. Dräger,et al.  Receptive fields of single cells and topography in mouse visual cortex , 1975, The Journal of comparative neurology.

[22]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  J. Malpeli,et al.  Cat area 17. II. Response properties of infragranular layer neurons in the absence of supragranular layer activity. , 1986, Journal of neurophysiology.

[24]  J. Chapin,et al.  Corticocortical connections within the primary somatosensory cortex of the rat , 1987, The Journal of comparative neurology.

[25]  J. Lund,et al.  Intrinsic laminar lattice connections in primate visual cortex , 1983, The Journal of comparative neurology.

[26]  A. Burkhalter,et al.  Fluorescent latex microspheres as a retrograde neuronal marker for in vivo and in vitro studies of visual cortex , 1984, Nature.

[27]  A. Burkhalter,et al.  Sequential development of connections between striate and extrastriate visual cortical areas in the rat , 1988, The Journal of comparative neurology.

[28]  R. C. Van Sluyters,et al.  Organization and postnatal development of callosal connections in the visual cortex of the rat , 1985, The Journal of comparative neurology.

[29]  A. Burkhalter,et al.  Intrinsic connections of rat primary visual cortex: Laminar organization of axonal projections , 1989, The Journal of comparative neurology.

[30]  G. Blasdel,et al.  Intrinsic connections of macaque striate cortex: afferent and efferent connections of lamina 4C , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  T. Woolsey,et al.  Structure of layer IV in the somatosensory neocortex of the rat: Description and comparison with the mouse , 1974, The Journal of comparative neurology.

[32]  T. Wiesel,et al.  Clustered intrinsic connections in cat visual cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  S. Levay Chapter 14: The patchy intrinsic projections of visual cortex , 1988 .

[34]  U. Dräger,et al.  Autoradiography of tritiated proline and fucose transported transneuronally from the eye to the visual cortex in pigmented and albino mice. , 1974, Brain research.

[35]  C. Gilbert,et al.  The projections of cells in different layers of the cat's visual cortex , 1975, The Journal of comparative neurology.

[36]  A L Pearlman,et al.  Laminar distribution of receptive field properties in the primary visual cortex of the mouse , 1980, The Journal of comparative neurology.

[37]  J. Tigges,et al.  Complementary laminar terminations of afferents to area 17 originating in area 18 and in the lateral geniculate nucleus in squirrel monkey , 1977, The Journal of comparative neurology.

[38]  T. Wiesel,et al.  Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  D C Van Essen,et al.  Shifter circuits: a computational strategy for dynamic aspects of visual processing. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[40]  K. Rockland Anatomical organization of primary visual cortex (area 17) in the ferret , 1985, The Journal of comparative neurology.

[41]  D. Whitteridge,et al.  Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat. , 1984, The Journal of physiology.

[42]  V. Montero,et al.  Retinotopic organization of striate and peristriate visual cortex in the albino rat. , 1973, Brain research.

[43]  T. Wiesel,et al.  Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex , 1979, Nature.

[44]  S. Espinoza,et al.  Retinotopic organization of striate and extrastriate visual cortex in the hooded rat , 1983, Brain Research.