High-Quality Extraction of Isosurfaces from Regular and Irregular Grids

Isosurfaces are ubiquitous in many fields, including visualization, graphics, and vision. They are often the main computational component of important processing pipelines (e.g., surface reconstruction), and are heavily used in practice. The classical approach to compute isosurfaces is to apply the Marching Cubes algorithm, which although robust and simple to implement, generates surfaces that require additional processing steps to improve triangle quality and mesh size. An important issue is that in some cases, the surfaces generated by Marching Cubes are irreparably damaged, and important details are lost which can not be recovered by subsequent processing. The main motivation of this work is to develop a technique capable of constructing high-quality and high-fidelity isosurfaces. We propose a new advancing front technique that is capable of creating high-quality isosurfaces from regular and irregular volumetric datasets. Our work extends the guidance field framework of Schreiner et al. to implicit surfaces, and improves it in significant ways. In particular, we describe a set of sampling conditions that guarantee that surface features will be captured by the algorithm. We also describe an efficient technique to compute a minimal guidance field, which greatly improves performance. Our experimental results show that our technique can generate high-quality meshes from complex datasets

[1]  Frédéric Hecht,et al.  MESH GRADATION CONTROL , 1998 .

[2]  Cláudio T. Silva,et al.  Direct (Re)Meshing for Efficient Surface Processing , 2006, Comput. Graph. Forum.

[3]  Jim Ruppert,et al.  A new and simple algorithm for quality 2-dimensional mesh generation , 1993, SODA '93.

[4]  Xavier Tricoche,et al.  Interactive point-based isosurface extraction , 2004, IEEE Visualization 2004.

[5]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[6]  Zoë J. Wood,et al.  Topological Noise Removal , 2001, Graphics Interface.

[7]  Bernd Hamann,et al.  The asymptotic decider: resolving the ambiguity in marching cubes , 1991, Proceeding Visualization '91.

[8]  Matthias Zwicker,et al.  Ieee Transactions on Visualization and Computer Graphics Ewa Splatting , 2002 .

[9]  R. Courant,et al.  Introduction to Calculus and Analysis , 1991 .

[10]  Joseph S. B. Mitchell,et al.  Greedy cuts: an advancing front terrain triangulation algorithm , 1998, GIS '98.

[11]  B. Natarajan On generating topologically consistent isosurfaces from uniform samples , 1994, The Visual Computer.

[12]  J. Wilhelms,et al.  Octrees for faster isosurface generation , 1992, TOGS.

[13]  Adrian Hilton,et al.  Marching triangles: range image fusion for complex object modelling , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[14]  Ross T. Whitaker,et al.  Curvature-based transfer functions for direct volume rendering: methods and applications , 2003, IEEE Visualization, 2003. VIS 2003..

[15]  Peter Lindstrom,et al.  Out-of-core simplification of large polygonal models , 2000, SIGGRAPH.

[16]  Jules Bloomenthal,et al.  Polygonization of implicit surfaces , 1988, Comput. Aided Geom. Des..

[17]  Paolo Cignoni,et al.  Reconstruction of topologically correct and adaptive trilinear isosurfaces , 2000, Comput. Graph..

[18]  Gregory M. Nielson,et al.  On Marching Cubes , 2003, IEEE Trans. Vis. Comput. Graph..

[19]  Andrew H. Gee,et al.  Regularised marching tetrahedra: improved iso-surface extraction , 1999, Comput. Graph..

[20]  Paul Ning,et al.  An evaluation of implicit surface tilers , 1993, IEEE Computer Graphics and Applications.

[21]  Samir Akkouche,et al.  Adaptive Implicit Surface Polygonization Using Marching Triangles , 2001, Comput. Graph. Forum.

[22]  Mariette Yvinec,et al.  Variational tetrahedral meshing , 2005, ACM Trans. Graph..

[23]  Luiz Velho,et al.  Physically-based methods for polygonization of implicit surfaces , 1992 .

[24]  Rainald Löhner,et al.  From Medical Images to CFD Meshes , 1999, IMR.

[25]  E. Catmull,et al.  A CLASS OF LOCAL INTERPOLATING SPLINES , 1974 .

[26]  Fujio Yamaguchi,et al.  Computer-Aided Geometric Design , 2002, Springer Japan.

[27]  Theresa-Marie Rhyne,et al.  Scientific Visualization , 1997, Encyclopedia of GIS.

[28]  Tao Ju,et al.  Dual contouring of hermite data , 2002, ACM Trans. Graph..

[29]  Paolo Cignoni,et al.  Speeding Up Isosurface Extraction Using Interval Trees , 1997, IEEE Trans. Vis. Comput. Graph..

[30]  J. Davenport Editor , 1960 .

[31]  Vaclav Skala,et al.  Adaptive edge spinning algorithm for polygonization of implicit surfaces , 2004 .

[32]  Paul S. Heckbert,et al.  Using particles to sample and control implicit surfaces , 1994, SIGGRAPH.

[33]  Marc Levoy,et al.  The digital Michelangelo project: 3D scanning of large statues , 2000, SIGGRAPH.

[34]  Gabriel Taubin,et al.  The ball-pivoting algorithm for surface reconstruction , 1999, IEEE Transactions on Visualization and Computer Graphics.

[35]  C. Micchelli,et al.  Blossoming begets B -spline bases built better by B -patches , 1992 .

[36]  Steven J. Owen,et al.  A Survey of Unstructured Mesh Generation Technology , 1998, IMR.

[37]  Jules Bloomenthal,et al.  An Implicit Surface Polygonizer , 1994, Graphics Gems.

[38]  A. James Stewart,et al.  Curvature-Dependent Triangulation of Implicit Surfaces , 2001, IEEE Computer Graphics and Applications.

[39]  Erich Hartmann,et al.  A marching method for the triangulation of surfaces , 1998, The Visual Computer.

[40]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[41]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[42]  Marshall W. Bern,et al.  Surface Reconstruction by Voronoi Filtering , 1998, SCG '98.

[43]  Marco Attene,et al.  Recent Advances in Remeshing of Surfaces , 2008, Shape Analysis and Structuring.

[44]  Han-Wei Shen,et al.  A Near Optimal Isosurface Extraction Algorithm Using the Span Space , 1996, IEEE Trans. Vis. Comput. Graph..

[45]  Brian Wyvill,et al.  Introduction to Implicit Surfaces , 1997 .

[46]  Robert Michael Kirby,et al.  Ray-tracing polymorphic multidomain spectral/hp elements for isosurface rendering , 2006, IEEE Transactions on Visualization and Computer Graphics.

[47]  Cláudio T. Silva,et al.  Triangulating point set surfaces with bounded error , 2005, SGP '05.

[48]  David E. Breen,et al.  Semi-regular mesh extraction from volumes , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[49]  Václav Skala,et al.  Adaptive edge spinning algorithm for polygonization of implicit surfaces , 2004, Proceedings Computer Graphics International, 2004..

[50]  Patricia Crossno,et al.  Isosurface extraction using particle systems , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[51]  Ross T. Whitaker,et al.  Robust particle systems for curvature dependent sampling of implicit surfaces , 2005, International Conference on Shape Modeling and Applications 2005 (SMI' 05).

[52]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[53]  Valerio Pascucci,et al.  Fast isocontouring for improved interactivity , 1996, VVS '96.

[54]  Jindong Chen,et al.  Modeling with cubic A-patches , 1995, TOGS.

[55]  Greg Turk,et al.  Re-tiling polygonal surfaces , 1992, SIGGRAPH.