Generalizing the method of Kulish to one-dimensional unsteady heat conducting slabs

aj = values of (0 or 1), j 1, 2 b = slab width, m bj = values of (0 or 1), j 1, 2 C = heat capacity, kJ= kg C F = arbitrary heat source, C=m fmax = forcing function, C=m G = Green’s function g x = initial condition, C k = thermal conductivity, W= m C q00 = dimensional heat flux,W=m s = dummy time variable, s T = temperature, C To = initial temperature, C t = time, s to = dummy time variable, s u = dummy time variable, s wx = weight function x = spatial variable, m xo = dummy spatial variable, m = thermal diffusivity [k= C ], m=s = small increment, s = fixed position, m = density, kg=m

[1]  V. Novozhilov,et al.  Integral Equation for the Heat Transfer with the Moving Boundary , 2003 .

[2]  Peter Linz,et al.  Analytical and numerical methods for Volterra equations , 1985, SIAM studies in applied and numerical mathematics.

[3]  Jay I Frankel,et al.  Inferring convective and radiative heating loads from transient surface temperature measurements in the half-space , 2007 .

[4]  Jay I. Frankel Regularization of inverse heat conduction by combination of rate sensor analysis and analytic continuation , 2007 .

[5]  Charles W. Groetsch,et al.  Differentiation of approximately specified functions , 1991 .

[6]  Motivation for the Development of Heating/Cooling Rate and Heat Flux Rate Sensors for Engineering Applications , 2004 .

[7]  A. Kaya,et al.  On the solution of integral equations with strongly singular kernels , 1985 .

[8]  J. I. Frankel,et al.  Flux formulation of hyperbolic heat conduction , 1985 .

[9]  R. Kress Linear Integral Equations , 1989 .

[10]  J. L. Lage,et al.  A Fractional-Diffusion Theory for Calculating Thermal Properties of Thin Films From Surface Transient Thermoreflectance Measurements , 2001 .

[11]  Jay I. Frankel,et al.  Stabilization of Ill-Posed Problems Through Thermal Rate Sensors , 2006 .

[12]  P. Kythe,et al.  Computational Methods for Linear Integral Equations , 2002 .

[13]  Paul A. Martin,et al.  Exact Solution of a Simple Hypersingular Integral Equation , 1992 .

[14]  Jay I. Frankel,et al.  Numerically Stabilizing Ill-Posed Moving Surface Problems Through Heat-Rate Sensors , 2005 .

[15]  Otmar Scherzer,et al.  Inverse Problems Light: Numerical Differentiation , 2001, Am. Math. Mon..

[16]  J. L. Lage,et al.  Fractional-Diffusion Solutions for Transient Local Temperature and Heat Flux , 2000 .

[17]  M. Keyhani,et al.  Heating Rate dT/dt Measurements Developed from In-Situ Thermocouples using a Voltage-Rate Interface for Advanced Thermal Diagnostics AIAA-2006-3636 , 2006 .

[18]  C. Brebbia,et al.  Boundary Element Techniques , 1984 .

[19]  R. Taylor,et al.  The Numerical Treatment of Integral Equations , 1978 .

[20]  M. A. Golberg,et al.  A Survey of Numerical Methods for Integral Equations , 1979 .

[21]  J. P. Holman,et al.  Experimental methods for engineers , 1971 .

[22]  HEATING/COOLING RATE SENSOR DEVELOPMENT FOR STABLE, REAL-TIME HEAT FLUX PREDICTIONS , 2005 .

[23]  Giovanni Monegato,et al.  Numerical evaluation of hypersingular integrals , 1994 .

[24]  Thomas E. Diller,et al.  Advances in Heat Flux Measurements , 1993 .