Unconventional features of C9ORF72 expanded repeat in amyotrophic lateral sclerosis and frontotemporal lobar degeneration

[1]  H. Morris,et al.  Reduced C9orf72 protein levels in frontal cortex of amyotrophic lateral sclerosis and frontotemporal degeneration brain with the C9ORF72 hexanucleotide repeat expansion , 2014, Neurobiology of Aging.

[2]  M. Gill,et al.  Analysis of the hexanucleotide repeat expansion and founder haplotype at C9ORF72 in an Irish psychosis case-control sample , 2014, Neurobiology of Aging.

[3]  D. Galimberti,et al.  The C9ORF72 hexanucleotide repeat expansion is a rare cause of schizophrenia , 2014, Neurobiology of Aging.

[4]  D. Galimberti,et al.  C9ORF72 repeat expansion not detected in patients with multiple sclerosis , 2014, Neurobiology of Aging.

[5]  D. Na,et al.  Clinical and genetic analysis of MAPT, GRN, and C9orf72 genes in Korean patients with frontotemporal dementia , 2014, Neurobiology of Aging.

[6]  A. Ludolph,et al.  Polymerase chain reaction and Southern blot-based analysis of the C9orf72 hexanucleotide repeat in different motor neuron diseases , 2014, Neurobiology of Aging.

[7]  K. Xia,et al.  Identification of C9orf72 repeat expansions in patients with amyotrophic lateral sclerosis and frontotemporal dementia in mainland China , 2014, Neurobiology of Aging.

[8]  Patrick G. Shaw,et al.  C9orf72 Nucleotide Repeat Structures Initiate Molecular Cascades of Disease , 2014, Nature.

[9]  P. Gleeson,et al.  C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking , 2014, Human molecular genetics.

[10]  E. Elahi,et al.  Repeat expansion in C9ORF72 is not a major cause of amyotrophic lateral sclerosis among Iranian patients , 2014, Neurobiology of Aging.

[11]  M. Mihailescu,et al.  Biophysical characterization of G-quadruplex forming FMR1 mRNA and of its interactions with different fragile X mental retardation protein isoforms , 2014, RNA.

[12]  C. E. Pearson,et al.  TMPyP4 Porphyrin Distorts RNA G-quadruplex Structures of the Disease-associated r(GGGGCC)n Repeat of the C9orf72 Gene and Blocks Interaction of RNA-binding Proteins* , 2013, The Journal of Biological Chemistry.

[13]  G. Rouleau,et al.  Deletion of C9ORF72 Results in Motor Neuron Degeneration and Stress Sensitivity in C. elegans , 2013, PloS one.

[14]  J. Ule,et al.  Hexanucleotide Repeats in ALS/FTD Form Length-Dependent RNA Foci, Sequester RNA Binding Proteins, and Are Neurotoxic , 2013, Cell reports.

[15]  T. Oyoshi,et al.  Specific binding of modified RGG domain in TLS/FUS to G-quadruplex RNA: tyrosines in RGG domain recognize 2'-OH of the riboses of loops in G-quadruplex. , 2013, Journal of the American Chemical Society.

[16]  J. Rothstein,et al.  RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia , 2013, Proceedings of the National Academy of Sciences.

[17]  D. Fan,et al.  C9orf72 repeat expansions are not detected in Chinese patients with familial ALS , 2013, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[18]  R. Olsthoorn,et al.  Stimulation of ribosomal frameshifting by RNA G-quadruplex structures , 2013, Nucleic acids research.

[19]  A. Isaacs,et al.  C9orf72 frontotemporal lobar degeneration is characterised by frequent neuronal sense and antisense RNA foci , 2013, Acta Neuropathologica.

[20]  L. Petrucelli,et al.  Reduced C9orf72 gene expression in c9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood , 2013, Acta Neuropathologica.

[21]  Gene W. Yeo,et al.  Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration , 2013, Proceedings of the National Academy of Sciences.

[22]  L. Petrucelli,et al.  Targeting RNA Foci in iPSC-Derived Motor Neurons from ALS Patients with a C9ORF72 Repeat Expansion , 2013, Science Translational Medicine.

[23]  E. Kremmer,et al.  Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins , 2013, Acta Neuropathologica.

[24]  Kevin F. Bieniek,et al.  Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS , 2013, Acta Neuropathologica.

[25]  Nipun A. Mistry,et al.  RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention , 2013, Neuron.

[26]  L. Petrucelli,et al.  Dipeptide repeat proteins are present in the p62 positive inclusions in patients with frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72 , 2013, Acta neuropathologica communications.

[27]  S. Lorenzl,et al.  Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations , 2013, Acta Neuropathologica.

[28]  L. Petrucelli,et al.  Association between repeat sizes and clinical and pathological characteristics in carriers of C9ORF72 repeat expansions (Xpansize-72): a cross-sectional cohort study , 2013, The Lancet Neurology.

[29]  I. Yazawa,et al.  Increased aggregation of polyleucine compared with that of polyglutamine in dentatorubral-pallidoluysian atrophy protein , 2013, Neuroscience Letters.

[30]  S. Tsuji,et al.  Rescue of amyotrophic lateral sclerosis phenotype in a mouse model by intravenous AAV9-ADAR2 delivery to motor neurons , 2013, EMBO molecular medicine.

[31]  J. Highley,et al.  C9ORF72 expansions, parkinsonism, and Parkinson disease , 2013, Neurology.

[32]  K. Xia,et al.  C9orf72 mutation is rare in Alzheimer's disease, Parkinson's disease, and essential tremor in China , 2013, Front. Cell. Neurosci..

[33]  D. Cleveland,et al.  Converging Mechanisms in ALS and FTD: Disrupted RNA and Protein Homeostasis , 2013, Neuron.

[34]  J. Cleary,et al.  Repeat-associated non-ATG (RAN) translation in neurological disease , 2013, Human molecular genetics.

[35]  A. Brice,et al.  Loss of function of C9orf72 causes motor deficits in a zebrafish model of amyotrophic lateral sclerosis , 2013, Annals of neurology.

[36]  R. Nalavade,et al.  Mechanisms of RNA-induced toxicity in CAG repeat disorders , 2013, Cell Death and Disease.

[37]  Jean-Louis Mergny,et al.  Combination of i-motif and G-quadruplex structures within the same strand: formation and application. , 2013, Angewandte Chemie.

[38]  Juan I. Young,et al.  C9ORF72 Intermediate Repeat Copies Are a Significant Risk Factor for Parkinson Disease , 2013, Annals of human genetics.

[39]  B. Miller,et al.  Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons , 2013, Acta Neuropathologica.

[40]  L. Petrucelli,et al.  Homozygosity for the C9orf72 GGGGCC repeat expansion in frontotemporal dementia , 2013, Acta Neuropathologica.

[41]  E. Rogaeva,et al.  Hypermethylation of the CpG island near the G4C2 repeat in ALS with a C9orf72 expansion. , 2013, American journal of human genetics.

[42]  N. Jodoin,et al.  Investigation of C9orf72 repeat expansions in Parkinson's disease , 2013, Neurobiology of Aging.

[43]  P. Deyn,et al.  C9orf72 G4C2 repeat expansions in Alzheimer's disease and mild cognitive impairment , 2013, Neurobiology of Aging.

[44]  T. Majima,et al.  Reversible Conformational Switching of i‐Motif DNA Studied by Fluorescence Spectroscopy , 2013, Photochemistry and photobiology.

[45]  C. Cruchaga,et al.  Parkinson disease is not associated with C9ORF72 repeat expansions , 2013, Neurobiology of Aging.

[46]  L. H. van den Berg,et al.  Amyotrophic lateral sclerosis is not linked to multiple sclerosis in a population based study , 2013, Journal of Neurology, Neurosurgery & Psychiatry.

[47]  A. Higginbottom,et al.  Simultaneous and independent detection of C9ORF72 alleles with low and high number of GGGGCC repeats using an optimised protocol of Southern blot hybridisation , 2013, Molecular Neurodegeneration.

[48]  Chadwick M. Hales,et al.  Expanded GGGGCC repeat RNA associated with amyotrophic lateral sclerosis and frontotemporal dementia causes neurodegeneration , 2013, Proceedings of the National Academy of Sciences.

[49]  Shankar Balasubramanian,et al.  G-Quadruplex structures are stable and detectable in human genomic DNA , 2013, Nature Communications.

[50]  B. Traynor,et al.  Screening for C9orf72 repeat expansions in parkinsonian syndromes , 2013, Neurobiology of Aging.

[51]  C. Ki,et al.  Analysis of the C9orf72 hexanucleotide repeat expansion in Korean patients with familial and sporadic amyotrophic lateral sclerosis , 2013, Neurobiology of Aging.

[52]  Richard Mayeux,et al.  C9ORF72 repeat expansions not detected in a group of patients with schizophrenia , 2013, Neurobiology of Aging.

[53]  R. Kurokawa,et al.  Regulation of telomere length by G-quadruplex telomere DNA- and TERRA-binding protein TLS/FUS. , 2013, Chemistry & biology.

[54]  E. Kremmer,et al.  The C9orf72 GGGGCC Repeat Is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS , 2013, Science.

[55]  T. Hortobágyi,et al.  ALS mutant FUS disrupts nuclear localization and sequesters wild-type FUS within cytoplasmic stress granules , 2013, Human molecular genetics.

[56]  Michael Benatar,et al.  Prion-like domain mutations in hnRNPs cause multisystem proteinopathy and ALS , 2013, Nature.

[57]  S. Balasubramanian,et al.  Quantitative visualization of DNA G-quadruplex structures in human cells. , 2013, Nature chemistry.

[58]  Nick C Fox,et al.  Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. , 2013, American journal of human genetics.

[59]  Kevin F. Bieniek,et al.  Unconventional Translation of C9ORF72 GGGGCC Expansion Generates Insoluble Polypeptides Specific to c9FTD/ALS , 2013, Neuron.

[60]  C. E. Pearson,et al.  The Disease-associated r(GGGGCC)n Repeat from the C9orf72 Gene Forms Tract Length-dependent Uni- and Multimolecular RNA G-quadruplex Structures* , 2013, The Journal of Biological Chemistry.

[61]  C. Broeckhoven,et al.  hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations , 2013, Acta Neuropathologica.

[62]  F. Pasquier,et al.  C9orf72 repeat expansions are a rare genetic cause of parkinsonism. , 2013, Brain : a journal of neurology.

[63]  A. Marcos,et al.  C9ORF72 hexanucleotide expansions of 20–22 repeats are associated with frontotemporal deterioration , 2013, Neurology.

[64]  Timothy P. Levine,et al.  The product of C9orf72, a gene strongly implicated in neurodegeneration, is structurally related to DENN Rab-GEFs , 2013, Bioinform..

[65]  L. Federici,et al.  Nucleophosmin mutations alter its nucleolar localization by impairing G-quadruplex binding at ribosomal DNA , 2013, Nucleic acids research.

[66]  G. Parkinson,et al.  C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes , 2012, Scientific Reports.

[67]  L. Aravind,et al.  Discovery of Novel DENN Proteins: Implications for the Evolution of Eukaryotic Intracellular Membrane Structures and Human Disease , 2012, Front. Gene..

[68]  S. Finkbeiner,et al.  Protein aggregates in Huntington's disease , 2012, Experimental Neurology.

[69]  F. Jessen,et al.  A Pan-European Study of the C9orf72 Repeat Associated with FTLD: Geographic Prevalence, Genomic Instability, and Intermediate Repeats , 2012, Human mutation.

[70]  Katrin Paeschke,et al.  DNA secondary structures: stability and function of G-quadruplex structures , 2012, Nature Reviews Genetics.

[71]  A. Singleton,et al.  Large C9orf72 repeat expansions are not a common cause of Parkinson's disease , 2012, Neurobiology of Aging.

[72]  N. Atsuta,et al.  Analysis of C9orf72 repeat expansion in 563 Japanese patients with amyotrophic lateral sclerosis , 2012, Neurobiology of Aging.

[73]  T. Hortobágyi,et al.  An MND/ALS phenotype associated with C9orf72 repeat expansion: Abundant p62‐positive, TDP‐43‐negative inclusions in cerebral cortex, hippocampus and cerebellum but without associated cognitive decline , 2012, Neuropathology : official journal of the Japanese Society of Neuropathology.

[74]  Hitoshi Takahashi,et al.  Japanese amyotrophic lateral sclerosis patients with GGGGCC hexanucleotide repeat expansion in C9ORF72 , 2012, Journal of Neurology, Neurosurgery & Psychiatry.

[75]  S. Tsuji,et al.  C9ORF72 repeat expansion in amyotrophic lateral sclerosis in the Kii peninsula of Japan. , 2012, Archives of neurology.

[76]  Nejc Haberman,et al.  Widespread binding of FUS along nascent RNA regulates alternative splicing in the brain , 2012, Scientific Reports.

[77]  S. Kwak,et al.  Co-Occurrence of TDP-43 Mislocalization with Reduced Activity of an RNA Editing Enzyme, ADAR2, in Aged Mouse Motor Neurons , 2012, PloS one.

[78]  D. Neary,et al.  Analysis of the hexanucleotide repeat in C9ORF72 in Alzheimer's disease , 2012, Neurobiology of Aging.

[79]  J. Mergny,et al.  Tetramolecular quadruplex stability and assembly. , 2012, Topics in current chemistry.

[80]  Michelle K. Lupton,et al.  The C9ORF72 expansion mutation is a common cause of ALS+/−FTD in Europe and has a single founder , 2012, European Journal of Human Genetics.

[81]  H. Mao,et al.  G-quadruplex and i-motif are mutually exclusive in ILPR double-stranded DNA. , 2012, Biophysical journal.

[82]  M. Mihailescu,et al.  A G‐Rich element forms a G‐quadruplex and regulates BACE1 mRNA alternative splicing , 2012, Journal of neurochemistry.

[83]  S. Kwak,et al.  The abnormal processing of TDP-43 is not an upstream event of reduced ADAR2 activity in ALS motor neurons , 2012, Neuroscience Research.

[84]  Harry T. Orr,et al.  Cell biology of spinocerebellar ataxia , 2012, The Journal of cell biology.

[85]  Janel O. Johnson,et al.  Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study , 2012, The Lancet Neurology.

[86]  S. Tsuji,et al.  Profound downregulation of the RNA editing enzyme ADAR2 in ALS spinal motor neurons , 2012, Neurobiology of Disease.

[87]  S. Pereson,et al.  A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study , 2012, The Lancet Neurology.

[88]  J. Stetefeld,et al.  The RNA helicase RHAU (DHX36) unwinds a G4-quadruplex in human telomerase RNA and promotes the formation of the P1 helix template boundary , 2012, Nucleic acids research.

[89]  T. Hortobágyi,et al.  p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS , 2011, Acta Neuropathologica.

[90]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[91]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[92]  Tomaž Curk,et al.  Analysis of alternative splicing associated with aging and neurodegeneration in the human brain. , 2011, Genome research.

[93]  A. Eisen,et al.  Pathological heterogeneity in amyotrophic lateral sclerosis with FUS mutations: two distinct patterns correlating with disease severity and mutation , 2011, Acta Neuropathologica.

[94]  J. Ule,et al.  Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. , 2011, Nature neuroscience.

[95]  P. Hainaut,et al.  G-quadruplex structures in TP53 intron 3: role in alternative splicing and in production of p53 mRNA isoforms. , 2011, Carcinogenesis.

[96]  Gene W. Yeo,et al.  Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43 , 2011, Nature Neuroscience.

[97]  Brian B. Gibbens,et al.  Non-ATG–initiated translation directed by microsatellite expansions , 2010, Proceedings of the National Academy of Sciences.

[98]  Shankar Balasubramanian,et al.  Small-molecule-mediated G-quadruplex isolation from human cells. , 2010, Nature chemistry.

[99]  I. Mackenzie,et al.  TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia , 2010, The Lancet Neurology.

[100]  L. Hurley,et al.  Making sense of G‐quadruplex and i‐motif functions in oncogene promoters , 2010, The FEBS journal.

[101]  E. Buratti,et al.  The multiple roles of TDP-43 in pre-mRNA processing and gene expression regulation , 2010, RNA biology.

[102]  T. Hortobágyi,et al.  Nuclear import impairment causes cytoplasmic trans-activation response DNA-binding protein accumulation and is associated with frontotemporal lobar degeneration. , 2010, Brain : a journal of neurology.

[103]  D. Cleveland,et al.  TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. , 2010, Human molecular genetics.

[104]  N. Hasebe,et al.  TDP-43 pathology in sporadic ALS occurs in motor neurons lacking the RNA editing enzyme ADAR2 , 2010, Acta Neuropathologica.

[105]  Peter K. Todd,et al.  RNA‐mediated neurodegeneration in repeat expansion disorders , 2009, Annals of neurology.

[106]  A. Bergman,et al.  RNA Editing Genes Associated with Extreme Old Age in Humans and with Lifespan in C. elegans , 2009, PloS one.

[107]  T. Cooper,et al.  Pathogenic mechanisms of myotonic dystrophy. , 2009, Biochemical Society transactions.

[108]  D. Nelson,et al.  Evidence for RNA-mediated toxicity in the fragile X-associated tremor/ataxia syndrome. , 2009, Future neurology.

[109]  Amy Lin,et al.  Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis. , 2009, Cancer research.

[110]  L. Hurley,et al.  Formation of a unique end-to-end stacked pair of G-quadruplexes in the hTERT core promoter with implications for inhibition of telomerase by G-quadruplex-interactive ligands. , 2009, Journal of the American Chemical Society.

[111]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[112]  Hiroaki Suzuki,et al.  ER Stress and Unfolded Protein Response in Amyotrophic Lateral Sclerosis , 2009, Molecular Neurobiology.

[113]  Andrea D'Ambrogio,et al.  Structural determinants of the cellular localization and shuttling of TDP-43 , 2008, Journal of Cell Science.

[114]  S. Balasubramanian,et al.  A novel small molecule that alters shelterin integrity and triggers a DNA-damage response at telomeres. , 2008, Journal of the American Chemical Society.

[115]  Laurence H. Hurley,et al.  Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions. , 2008, Biochimie.

[116]  R. Wells DNA triplexes and Friedreich ataxia , 2008, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[117]  Xun Hu,et al.  TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis , 2008, Science.

[118]  P. Jin,et al.  Pur α Binds to rCGG Repeats and Modulates Repeat-Mediated Neurodegeneration in a Drosophila Model of Fragile X Tremor/Ataxia Syndrome , 2007, Neuron.

[119]  P. Gissen,et al.  Cargos and genes: insights into vesicular transport from inherited human disease , 2007, Journal of Medical Genetics.

[120]  Hamid Morjani,et al.  Telomestatin-induced Telomere Uncapping Is Modulated by POT1 through G-overhang Extension in HT1080 Human Tumor Cells* , 2006, Journal of Biological Chemistry.

[121]  R. Shafer,et al.  Engineering the quadruplex fold: nucleoside conformation determines both folding topology and molecularity in guanine quadruplexes. , 2006, Journal of the American Chemical Society.

[122]  Shankar Balasubramanian,et al.  Prevalence of quadruplexes in the human genome , 2005, Nucleic acids research.

[123]  M. Zampieri,et al.  DNA methylation and chromatin structure: The puzzling CpG islands , 2005, Journal of cellular biochemistry.

[124]  M. Napierala,et al.  CUG Repeats Present in Myotonin Kinase RNA Form Metastable “Slippery” Hairpins* , 1997, The Journal of Biological Chemistry.

[125]  M. Guéron,et al.  A tetrameric DNA structure with protonated cytosine-cytosine base pairs , 1993, Nature.

[126]  W. Gilbert,et al.  Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis , 1988, Nature.

[127]  Shankar Balasubramanian,et al.  Visualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cells. , 2014, Nature chemistry.

[128]  N. Campbell,et al.  G-quadruplexes and metal ions. , 2012, Metal ions in life sciences.

[129]  L. Hurley,et al.  The role of G-quadruplex/i-motif secondary structures as cis-acting regulatory elements , 2010, Pure and applied chemistry. Chimie pure et appliquee.