Superoptimal approximation for unbounded symbols

Abstract The superoptimal Frobenius approximation of Toeplitz matrices is considered in connection with the case of unbounded symbols. In particular, we use the superoptimal approximation as preconditioner for the CG method when a Fisher–Hartwig singularity is present in the symbol, with special regard to systems coming from times series and financial applications. A theoretical discussion concerning classical circulant preconditioners and a numerical comparison with the Strang and with the optimal approximations are presented particularly with reference to the presence of noise.

[1]  C. Estatico Regularized fast multiple-image deconvolution for LBT , 2007 .

[2]  Stefano Serra Capizzano,et al.  A unifying approach to abstract matrix algebra preconditioning , 1999, Numerische Mathematik.

[3]  S. Serra-Capizzano Practical Band Toeplitz Preconditioning and Boundary Layer Effects , 2003 .

[4]  S. Capizzano,et al.  Komleva-type expansions and asymptotics for linear operators , 2002 .

[5]  Eugene E. Tyrtyshnikov,et al.  Optimal and Superoptimal Circulant Preconditioners , 1992, SIAM J. Matrix Anal. Appl..

[6]  Eugene E. Tyrtyshnikov,et al.  Circulant preconditioners with unbounded inverses , 1995 .

[7]  Michele Benzi,et al.  A Sparse Approximate Inverse Preconditioner for the Conjugate Gradient Method , 1996, SIAM J. Sci. Comput..

[8]  Claudio Estatico A classification scheme for regularizing preconditioners, with application to Toeplitz systems☆ , 2005 .

[9]  Stefano Serra,et al.  On the extreme eigenvalues of hermitian (block) toeplitz matrices , 1998 .

[10]  Paolo Tilli,et al.  On unitarily invariant norms of matrix-valued linear positive operators , 2002 .

[11]  Stefano Serra How to Choose the Best Iterative Strategy for Symmetric Toeplitz Systems , 1999 .

[12]  Yi Lu,et al.  On the Complexity of the Preconditioned Conjugate Gradient Algorithm for Solving Toeplitz Systems with a Fisher-Hartwig Singularity , 2005, SIAM J. Matrix Anal. Appl..

[13]  T. Chan An Optimal Circulant Preconditioner for Toeplitz Systems , 1988 .

[14]  Raymond H. Chan,et al.  The spectra of super-optimal circulant preconditioned Toeplitz systems , 1991 .

[15]  Raymond H. Chan,et al.  Fast Band-Toeplitz Preconditioners for Hermitian Toeplitz Systems , 1994, SIAM J. Sci. Comput..

[16]  Stefano Serra Capizzano,et al.  Superoptimal Preconditioned Conjugate Gradient Iteration for Image Deblurring , 2005, SIAM J. Sci. Comput..

[17]  D. Jackson,et al.  The theory of approximation , 1982 .

[18]  Eugene E. Tyrtyshnikov,et al.  Spectra of multilevel toeplitz matrices: Advanced theory via simple matrix relationships , 1998 .

[19]  Stefano Serra Capizzano,et al.  An ergodic theorem for classes of preconditioned matrices , 1998 .

[20]  Mario Bertero,et al.  Introduction to Inverse Problems in Imaging , 1998 .

[21]  Stefano Serra Capizzano,et al.  Optimal multilevel matrix algebra operators , 2000 .

[22]  T. Kailath,et al.  Displacement structure approach to discrete-trigonometric-transform based preconditioners of G.Strang type and of T.Chan type , 1996 .

[23]  Rajendra Bhatia FOURIER SERIES , 2005 .

[24]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[25]  Thomas Huckle Efficient computation of sparse approximate inverses , 1998 .

[26]  J. Nagy,et al.  KRONECKER PRODUCT AND SVD APPROXIMATIONS IN IMAGE RESTORATION , 1998 .

[27]  Stefano Serra Capizzano,et al.  Matrix algebra preconditioners for multilevel Toeplitz systems do not insure optimal convergence rate , 2004, Theor. Comput. Sci..

[28]  Seakweng Vong,et al.  A Note on the Complexity of the PCG Algorithm for Solving Toeplitz Systems with a Fisher-Hartwig Singularity , 2006 .

[29]  Lothar Reichel,et al.  On the regularizing properties of the GMRES method , 2002, Numerische Mathematik.

[30]  Misha Elena Kilmer,et al.  Cauchy-like Preconditioners for Two-Dimensional Ill-Posed Problems , 1999, SIAM J. Matrix Anal. Appl..

[31]  Raymond H. Chan,et al.  Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..

[32]  Stefano Serra Capizzano,et al.  Korovkin tests, approximation, and ergodic theory , 2000, Math. Comput..

[33]  Claudio Estatico,et al.  A Class of Filtering Superoptimal Preconditioners for Highly Ill-Conditioned Linear Systems , 2002 .

[34]  Stefano Serra,et al.  Optimal, quasi-optimal and superlinear band-Toeplitz preconditioners for asymptotically ill-conditioned positive definite Toeplitz systems , 1997 .

[35]  G. Strang A proposal for toeplitz matrix calculations , 1986 .

[36]  Stefano Serra,et al.  A Korovkin-type theory for finite Toeplitz operators via matrix algebras , 1999 .

[37]  Lars Eldén,et al.  An Algorithm for the Regularization of Ill-Conditioned, Banded Least Squares Problems , 1984 .

[38]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[39]  Eugene E. Tyrtyshnikov,et al.  Which circulant preconditioner is better? , 1996, Math. Comput..

[40]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[41]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[42]  Stefano Serra Capizzano,et al.  A Note on the Superoptimal Matrix Algebra Operators , 2002 .

[43]  Bernd Silbermann,et al.  Analysis of Toeplitz Operators , 1991 .