Cyclic di-GMP-dependent Signaling Pathways in the Pathogenic Firmicute Listeria monocytogenes

We characterized key components and major targets of the c-di-GMP signaling pathways in the foodborne pathogen Listeria monocytogenes, identified a new c-di-GMP-inducible exopolysaccharide responsible for motility inhibition, cell aggregation, and enhanced tolerance to disinfectants and desiccation, and provided first insights into the role of c-di-GMP signaling in listerial virulence. Genome-wide genetic and biochemical analyses of c-di-GMP signaling pathways revealed that L. monocytogenes has three GGDEF domain proteins, DgcA (Lmo1911), DgcB (Lmo1912) and DgcC (Lmo2174), that possess diguanylate cyclase activity, and three EAL domain proteins, PdeB (Lmo0131), PdeC (Lmo1914) and PdeD (Lmo0111), that possess c-di-GMP phosphodiesterase activity. Deletion of all phosphodiesterase genes (ΔpdeB/C/D) or expression of a heterologous diguanylate cyclase stimulated production of a previously unknown exopolysaccharide. The synthesis of this exopolysaccharide was attributed to the pssA-E (lmo0527-0531) gene cluster. The last gene of the cluster encodes the fourth listerial GGDEF domain protein, PssE, that functions as an I-site c-di-GMP receptor essential for exopolysaccharide synthesis. The c-di-GMP-inducible exopolysaccharide causes cell aggregation in minimal medium and impairs bacterial migration in semi-solid agar, however, it does not promote biofilm formation on abiotic surfaces. The exopolysaccharide also greatly enhances bacterial tolerance to commonly used disinfectants as well as desiccation, which may contribute to survival of L. monocytogenes on contaminated food products and in food-processing facilities. The exopolysaccharide and another, as yet unknown c-di-GMP-dependent target, drastically decrease listerial invasiveness in enterocytes in vitro, and lower pathogen load in the liver and gallbladder of mice infected via an oral route, which suggests that elevated c-di-GMP levels play an overall negative role in listerial virulence.

[1]  H. Flemming,et al.  The biofilm matrix , 2010, Nature Reviews Microbiology.

[2]  H. Sondermann,et al.  You've come a long way: c-di-GMP signaling. , 2012, Current opinion in microbiology.

[3]  Mark Gomelsky,et al.  Cyclic Diguanylate Is a Ubiquitous Signaling Molecule in Bacteria: Insights into Biochemistry of the GGDEF Protein Domain , 2005, Journal of bacteriology.

[4]  M. Parsek,et al.  Direct Evaluation of Pseudomonas aeruginosa Biofilm Mediators in a Chronic Infection Model , 2011, Infection and Immunity.

[5]  A. G. Bobrov,et al.  Regulation of biofilm formation in Yersinia pestis. , 2007, Advances in experimental medicine and biology.

[6]  M. Rohde,et al.  The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix , 2001, Molecular microbiology.

[7]  B. Giese,et al.  Structural basis of activity and allosteric control of diguanylate cyclase. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[8]  A. Spiers,et al.  Biofilm formation at the air–liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose , 2003, Molecular microbiology.

[9]  B. Giese,et al.  Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. , 2004, Genes & development.

[10]  Yumi Kumagai,et al.  The Anaplasma phagocytophilum PleC Histidine Kinase and PleD Diguanylate Cyclase Two-Component System and Role of Cyclic Di-GMP in Host Cell Infection , 2008, Journal of bacteriology.

[11]  F Allerberger,et al.  Listeriosis: a resurgent foodborne infection. , 2010, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[12]  Kris Blair,et al.  The EpsE Flagellar Clutch Is Bifunctional and Synergizes with EPS Biosynthesis to Promote Bacillus subtilis Biofilm Formation , 2010, PLoS genetics.

[13]  C. Dann,et al.  Functional Characterization of Core Components of the Bacillus subtilis Cyclic-Di-GMP Signaling Pathway , 2013, Journal of bacteriology.

[14]  J. Matsuo,et al.  Cyclic Dimeric GMP Signaling Regulates Intracellular Aggregation, Sessility, and Growth of Ehrlichia chaffeensis , 2011, Infection and Immunity.

[15]  Yoshihiro Hayakawa,et al.  STING is a direct innate immune sensor of cyclic-di-GMP , 2011, Nature.

[16]  Andrew J. Schmidt,et al.  The Ubiquitous Protein Domain EAL Is a Cyclic Diguanylate-Specific Phosphodiesterase: Enzymatically Active and Inactive EAL Domains , 2005, Journal of bacteriology.

[17]  S. Guadagnini,et al.  Septin 11 Restricts InlB-mediated Invasion by Listeria , 2009, Journal of Biological Chemistry.

[18]  G. O’Toole,et al.  Second messenger regulation of biofilm formation: breakthroughs in understanding c-di-GMP effector systems. , 2012, Annual review of cell and developmental biology.

[19]  U. Jenal,et al.  Allosteric activation of exopolysaccharide synthesis through cyclic di‐GMP‐stimulated protein–protein interaction , 2012, The EMBO journal.

[20]  C. Solano,et al.  Coordinated Cyclic-Di-GMP Repression of Salmonella Motility through YcgR and Cellulose , 2012, Journal of bacteriology.

[21]  R. Losick,et al.  Evidence for Cyclic Di-GMP-Mediated Signaling in Bacillus subtilis , 2012, Journal of bacteriology.

[22]  M. Vergassola,et al.  The Listeria transcriptional landscape from saprophytism to virulence , 2009, Nature.

[23]  Markus Meuwly,et al.  Allosteric Control of Cyclic di-GMP Signaling* , 2006, Journal of Biological Chemistry.

[24]  G. Stewart,et al.  High-efficiency transformation of Listeria monocytogenes by electroporation of penicillin-treated cells. , 1990, Gene.

[25]  P. Cossart,et al.  Single-Cell Techniques Using Chromosomally Tagged Fluorescent Bacteria To Study Listeria monocytogenes Infection Processes , 2010, Applied and Environmental Microbiology.

[26]  J. Ryu,et al.  Biofilm Formation by Escherichia coli O157:H7 on Stainless Steel: Effect of Exopolysaccharide and Curli Production on Its Resistance to Chlorine , 2005, Applied and Environmental Microbiology.

[27]  C. Hill,et al.  An in vitro cell-culture model demonstrates internalin- and hemolysin-independent translocation of Listeria monocytogenes across M cells. , 2006, Microbial pathogenesis.

[28]  Vincent T. Lee,et al.  The second messenger bis‐(3′‐5′)‐cyclic‐GMP and its PilZ domain‐containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa , 2007, Molecular microbiology.

[29]  J. H. Boom,et al.  Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid , 1987, Nature.

[30]  P. Rydén,et al.  Cycles of light and dark co-ordinate reversible colony differentiation in Listeria monocytogenes , 2013, Molecular microbiology.

[31]  A. Camilli,et al.  The EAL Domain Protein VieA Is a Cyclic Diguanylate Phosphodiesterase* , 2005, Journal of Biological Chemistry.

[32]  B. Birren,et al.  Short-term genome evolution of Listeria monocytogenes in a non-controlled environment , 2008, BMC Genomics.

[33]  L. Lenz,et al.  The Journal of Experimental Medicine CORRESPONDENCE , 2005 .

[34]  J. O’Gara ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. , 2007, FEMS microbiology letters.

[35]  C. Arrieumerlou,et al.  YfiBNR Mediates Cyclic di-GMP Dependent Small Colony Variant Formation and Persistence in Pseudomonas aeruginosa , 2010, PLoS pathogens.

[36]  Michael Y. Galperin,et al.  Cyclic di-GMP: the First 25 Years of a Universal Bacterial Second Messenger , 2013, Microbiology and Molecular Reviews.

[37]  R. Kolter,et al.  Matrix Biofilm Pseudomonas aeruginosa of the Carbohydrate-Rich Structural Components Two Genetic Loci Produce Distinct , 2004 .

[38]  J. Matsuo,et al.  Cyclic di-GMP Signaling Regulates Invasion by Ehrlichia chaffeensis of Human Monocytes , 2010, Journal of bacteriology.

[39]  D. Hodgson,et al.  Development of a Synthetic Minimal Medium for Listeria monocytogenes , 2003, Applied and Environmental Microbiology.

[40]  H. Berg,et al.  Migration of bacteria in semisolid agar. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[41]  D. Portnoy,et al.  Hyperinduction of Host Beta Interferon by a Listeria monocytogenes Strain Naturally Overexpressing the Multidrug Efflux Pump MdrT , 2012, Infection and Immunity.

[42]  H. Sondermann,et al.  Sensing the messenger: The diverse ways that bacteria signal through c‐di‐GMP , 2012, Protein science : a publication of the Protein Society.

[43]  Volker Roth,et al.  Second Messenger-Mediated Adjustment of Bacterial Swimming Velocity , 2010, Cell.

[44]  S. Grzesiek,et al.  DgrA is a member of a new family of cyclic diguanosine monophosphate receptors and controls flagellar motor function in Caulobacter crescentus , 2007, Proceedings of the National Academy of Sciences.

[45]  R. Kolter,et al.  Flagellar Motility Is Critical for Listeria monocytogenes Biofilm Formation , 2007, Journal of bacteriology.

[46]  Yoshihiro Hayakawa,et al.  A cyclic-di-GMP receptor required for bacterial exopolysaccharide production , 2007, Molecular microbiology.

[47]  C. Fuqua,et al.  Biofilm formation in plant-microbe associations. , 2004, Current opinion in microbiology.

[48]  P. Fey,et al.  Of Cyclic Dimeric Gmp Independently Regulates Biofilm Formation a Staphylococcal Ggdef Domain Protein , 2008 .

[49]  Zasha Weinberg,et al.  An Allosteric Self-Splicing Ribozyme Triggered by a Bacterial Second Messenger , 2010, Science.

[50]  Sky W. Brubaker,et al.  The N-Ethyl-N-Nitrosourea-Induced Goldenticket Mouse Mutant Reveals an Essential Function of Sting in the In Vivo Interferon Response to Listeria monocytogenes and Cyclic Dinucleotides , 2010, Infection and Immunity.

[51]  N. Freitag,et al.  Listeria monocytogenes — from saprophyte to intracellular pathogen , 2009, Nature Reviews Microbiology.

[52]  X. Fang,et al.  A post‐translational, c‐di‐GMP‐dependent mechanism regulating flagellar motility , 2010, Molecular microbiology.

[53]  J. R. Gorny,et al.  Multistate outbreak of listeriosis associated with cantaloupe. , 2013, The New England journal of medicine.

[54]  G. Schoolnik,et al.  Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Roberto Kolter,et al.  Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis , 1998, Molecular microbiology.

[56]  D. Blair,et al.  The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "backstop brake" mechanism. , 2010, Molecular cell.

[57]  U. Jenal,et al.  Cyclic Diguanylate Signaling Proteins Control Intracellular Growth of Legionella pneumophila , 2011, mBio.

[58]  S. Kathariou,et al.  Resistance of Listeria monocytogenes Biofilms to Sanitizing Agents in a Simulated Food Processing Environment , 2006, Applied and Environmental Microbiology.

[59]  Hidde L Ploegh,et al.  CX3CR1-Mediated Dendritic Cell Access to the Intestinal Lumen and Bacterial Clearance , 2005, Science.

[60]  P. Ricciardi-Castagnoli,et al.  Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria , 2001, Nature Immunology.

[61]  U. Römling,et al.  GGDEF and EAL domains inversely regulate cyclic di‐GMP levels and transition from sessility to motility , 2004, Molecular microbiology.

[62]  U. Römling,et al.  The PilZ Domain Is a Receptor for the Second Messenger c-di-GMP , 2006, Journal of Biological Chemistry.

[63]  J. Harty,et al.  Interactions of the invasive pathogens Salmonella typhimurium, Listeria monocytogenes, and Shigella flexneri with M cells and murine Peyer's patches. , 1998, Infection and immunity.

[64]  U. Römling,et al.  Complex c-di-GMP Signaling Networks Mediate Transition between Virulence Properties and Biofilm Formation in Salmonella enterica Serovar Typhimurium , 2011, PloS one.

[65]  H. Berg,et al.  A Molecular Clutch Disables Flagella in the Bacillus subtilis Biofilm , 2008, Science.

[66]  Grant S. Jones,et al.  InlA Promotes Dissemination of Listeria monocytogenes to the Mesenteric Lymph Nodes during Food Borne Infection of Mice , 2012, PLoS pathogens.

[67]  R. Sockett,et al.  Discrete Cyclic di-GMP-Dependent Control of Bacterial Predation versus Axenic Growth in Bdellovibrio bacteriovorus , 2012, PLoS pathogens.

[68]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[69]  M. Desvaux,et al.  Molecular biology of surface colonization by Listeria monocytogenes: an additional facet of an opportunistic Gram-positive foodborne pathogen. , 2011, Environmental microbiology.

[70]  P. Youngman,et al.  Use of a new integrational vector to investigate compartment-specific expression of the Bacillus subtilis spoIIM gene. , 1992, Biochimie.

[71]  A. Camilli,et al.  Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. , 2007, Annual review of microbiology.

[72]  Matthias Christen,et al.  Identification and Characterization of a Cyclic di-GMP-specific Phosphodiesterase and Its Allosteric Control by GTP* , 2005, Journal of Biological Chemistry.

[73]  C. Chothia,et al.  Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. , 2001, Journal of molecular biology.

[74]  Samuel I. Miller,et al.  The bacterial second messenger c‐di‐GMP: mechanisms of signalling , 2011, Cellular microbiology.

[75]  T. Møretrø,et al.  Listeria monocytogenes : biofilm formation and persistence in food-processing environments , 2004 .

[76]  R. Shoeman,et al.  Structure and mechanism of a bacterial light-regulated cyclic nucleotide phosphodiesterase , 2009, Nature.

[77]  K. Hoelzer,et al.  Listeria monocytogenes growth dynamics on produce: a review of the available data for predictive modeling. , 2012, Foodborne pathogens and disease.

[78]  T. Schwede,et al.  Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. , 2009, Genes & development.

[79]  Jacob L.W. Morgan,et al.  Crystallographic snapshot of cellulose synthesis and membrane translocation , 2012, Nature.

[80]  V. Burrus,et al.  c-di-GMP Turn-Over in Clostridium difficile Is Controlled by a Plethora of Diguanylate Cyclases and Phosphodiesterases , 2011, PLoS genetics.

[81]  J. M. Dow,et al.  Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[82]  M. Domingo,et al.  Penetration of Listeria monocytogenes in mice infected by the oral route. , 1997, Microbial pathogenesis.

[83]  C. Hill,et al.  Tools for Functional Postgenomic Analysis of Listeria monocytogenes , 2008, Applied and Environmental Microbiology.

[84]  Saeed Tavazoie,et al.  A Comprehensive Genetic Characterization of Bacterial Motility , 2007, PLoS genetics.

[85]  A. Bhunia,et al.  Adhesion, Invasion, and Translocation Characteristics of Listeria monocytogenes Serotypes in Caco-2 Cell and House Models , 2003, Applied and Environmental Microbiology.

[86]  Daniel G. Lee,et al.  Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3'-5')-cyclic-GMP in virulence. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[87]  C. Waters,et al.  Cyclic Diguanylate Inversely Regulates Motility and Aggregation in Clostridium difficile , 2012, Journal of bacteriology.

[88]  M. Bronze,et al.  Listeria monocytogenes: epidemiology, human disease, and mechanisms of brain invasion. , 2008, FEMS immunology and medical microbiology.

[89]  B. J. Hinnebusch,et al.  Depolymerization of β-1,6-N-Acetyl-d-Glucosamine Disrupts the Integrity of Diverse Bacterial Biofilms , 2005, Journal of bacteriology.

[90]  P. Howell,et al.  Synthase-dependent exopolysaccharide secretion in Gram-negative bacteria. , 2013, Trends in microbiology.

[91]  D. Portnoy,et al.  c-di-AMP Secreted by Intracellular Listeria monocytogenes Activates a Host Type I Interferon Response , 2010, Science.

[92]  W. Donachie,et al.  Temperature-dependent expression of flagella of Listeria monocytogenes studied by electron microscopy, SDS-PAGE and western blotting. , 1988, Journal of general microbiology.

[93]  U. Römling Molecular biology of cellulose production in bacteria. , 2002, Research in microbiology.

[94]  P. Cossart Illuminating the landscape of host–pathogen interactions with the bacterium Listeria monocytogenes , 2011, Proceedings of the National Academy of Sciences.

[95]  Matthew R. Parsek,et al.  Pseudomonas aeruginosa Rugose Small-Colony Variants Have Adaptations That Likely Promote Persistence in the Cystic Fibrosis Lung , 2009, Journal of bacteriology.

[96]  R. Breaker,et al.  Riboswitches in Eubacteria Sense the Second Messenger Cyclic Di-GMP , 2008, Science.