Making sense of pervasive signals: a machine learning approach

This study focused on challenges come from noisy and complex pervasive data. We proposed new Bayesian nonparametric models to infer co-patterns from multi-channel data collected from pervasive devices. By making sense of pervasive data, the study contributes to the development of Machine Learning and Data Mining in Big Data era.

[1]  Andrea Gaggioli,et al.  A mobile data collection platform for mental health research , 2013, Personal and Ubiquitous Computing.

[2]  Michael I. Jordan,et al.  An HDP-HMM for systems with state persistence , 2008, ICML '08.

[3]  Sunny Consolvo,et al.  Learning and Recognizing the Places We Go , 2005, UbiComp.

[4]  Thad Starner,et al.  Learning Significant Locations and Predicting User Movement with GPS , 2002, Proceedings. Sixth International Symposium on Wearable Computers,.

[5]  Svetha Venkatesh,et al.  A Bayesian Nonparametric Approach to Multilevel Regression , 2015, PAKDD.

[6]  Gregory D. Abowd,et al.  Towards a Better Understanding of Context and Context-Awareness , 1999, HUC.

[7]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .

[8]  Dinh Q. Phung,et al.  Bayesian Nonparametric Multilevel Clustering with Group-Level Contexts , 2014, ICML.

[9]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[10]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[11]  Mohan Kumar,et al.  Unsupervised context detection using wireless signals , 2009, Pervasive Mob. Comput..

[12]  Thuong Nguyen Bayesian nonparametric learning of contexts and activities from pervasive signals , 2015 .

[13]  Albert-László Barabási,et al.  The origin of bursts and heavy tails in human dynamics , 2005, Nature.

[14]  Svetha Venkatesh,et al.  Fixed-lag particle filter for continuous context discovery using Indian Buffet Process , 2014, 2014 IEEE International Conference on Pervasive Computing and Communications (PerCom).

[15]  Alex Pentland,et al.  Modeling the co-evolution of behaviors and social relationships using mobile phone data , 2011, MUM.

[16]  Gregory D. Abowd,et al.  Charting past, present, and future research in ubiquitous computing , 2000, TCHI.

[17]  Michael J. Black,et al.  A Non-Parametric Bayesian Approach to Spike Sorting , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[18]  Ken Sakamura,et al.  Ubiquitous computing technologies for ubiquitous learning , 2005, IEEE International Workshop on Wireless and Mobile Technologies in Education (WMTE'05).

[19]  J. Ulrich [Physiology of the heart]. , 1950, Zeitschrift fur Kreislaufforschung.

[20]  Dinh Q. Phung,et al.  Conditionally Dependent Dirichlet Processes for Modelling Naturally Correlated Data Sources , 2013 .

[21]  M. Weiser,et al.  THE COMING AGE OF CALM TECHNOLOGY[1] , 1996 .

[22]  Upkar Varshney,et al.  Pervasive Healthcare and Wireless Health Monitoring , 2007, Mob. Networks Appl..

[23]  V. Turchin On the Computation of Multidimensional Integrals by the Monte-Carlo Method , 1971 .

[24]  Dinh Q. Phung,et al.  Learning Latent Activities from Social Signals with Hierarchical Dirichlet Processes , 2014 .

[25]  Jerzy W. Grzymala-Busse,et al.  A Comparison of Several Approaches to Missing Attribute Values in Data Mining , 2000, Rough Sets and Current Trends in Computing.

[26]  Gaetano Borriello,et al.  Extracting places from traces of locations , 2004, MOCO.

[27]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[28]  Daniel Gatica-Perez,et al.  The Places of Our Lives: Visiting Patterns and Automatic Labeling from Longitudinal Smartphone Data , 2014, IEEE Transactions on Mobile Computing.

[29]  Svetha Venkatesh,et al.  Activity recognition and abnormality detection with the switching hidden semi-Markov model , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[30]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[31]  Scott Bell,et al.  WiFi-based enhanced positioning systems: accuracy through mapping, calibration, and classification , 2010, ISA '10.

[32]  Wei Luo,et al.  Unsupervised inference of significant locations from WiFi data for understanding human dynamics , 2014, MUM.

[33]  Robin Parker,et al.  Missing Data Problems in Machine Learning , 2010 .

[34]  Antonio Torralba,et al.  Describing Visual Scenes Using Transformed Objects and Parts , 2008, International Journal of Computer Vision.

[35]  C. Antoniak Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .

[36]  Vu Nguyen,et al.  Bayesian nonparametric multilevel modelling and applications , 2015 .

[37]  Moustafa Youssef,et al.  Rover: Scalable Location-Aware Computing , 2002, Computer.

[38]  Daniel Gatica-Perez,et al.  Human interaction discovery in smartphone proximity networks , 2013, Personal and Ubiquitous Computing.

[39]  L. Rabiner,et al.  An introduction to hidden Markov models , 1986, IEEE ASSP Magazine.

[40]  Theo Geisel,et al.  The Impact of Human Mobility on Spatial Disease Dynamics , 2009, 2009 International Conference on Computational Science and Engineering.

[41]  Timothy W. Finin,et al.  On data management in pervasive computing environments , 2004, IEEE Transactions on Knowledge and Data Engineering.

[42]  Bernt Schiele,et al.  Discovery of activity patterns using topic models , 2008 .

[43]  Tai Sing Lee,et al.  The Block Diagonal Infinite Hidden Markov Model , 2009, AISTATS.

[44]  Xing Xie,et al.  Mining Individual Life Pattern Based on Location History , 2009, 2009 Tenth International Conference on Mobile Data Management: Systems, Services and Middleware.

[45]  Seán McLoone,et al.  Computationally tractable location estimation on WiFi enabled mobile phones , 2009 .

[46]  Michael I. Jordan,et al.  Revisiting k-means: New Algorithms via Bayesian Nonparametrics , 2011, ICML.

[47]  R. Bharat Rao,et al.  Evolution of mobile location-based services , 2003, CACM.

[48]  Klaus Neusser,et al.  State-Space Models and the Kalman Filter , 2016 .

[49]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[50]  Carl E. Rasmussen,et al.  The Infinite Gaussian Mixture Model , 1999, NIPS.

[51]  M. Escobar,et al.  Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .

[52]  Gaetano Borriello,et al.  Location Systems for Ubiquitous Computing , 2001, Computer.

[53]  Jun S. Liu,et al.  The Collapsed Gibbs Sampler in Bayesian Computations with Applications to a Gene Regulation Problem , 1994 .

[54]  Franco Zambonelli,et al.  Looking ahead in pervasive computing: Challenges and opportunities in the era of cyber-physical convergence , 2012, Pervasive Mob. Comput..

[55]  Anind K. Dey,et al.  Understanding and Using Context , 2001, Personal and Ubiquitous Computing.

[56]  P Caminal,et al.  Automatic detection of wave boundaries in multilead ECG signals: validation with the CSE database. , 1994, Computers and biomedical research, an international journal.

[57]  James H. Aylor,et al.  Computer for the 21st Century , 1999, Computer.

[58]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[59]  Thomas L. Griffiths,et al.  Infinite latent feature models and the Indian buffet process , 2005, NIPS.

[60]  John Krumm,et al.  Ubiquitous Computing Fundamentals , 2009 .

[61]  Xing Xie,et al.  Collaborative location and activity recommendations with GPS history data , 2010, WWW '10.

[62]  A. Pentland Automatic mapping and modeling of human networks , 2007 .

[63]  Deborah Estrin,et al.  Discovering semantically meaningful places from pervasive RF-beacons , 2009, UbiComp.

[64]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[65]  Svetha Venkatesh,et al.  Learning Conditional Latent Structures from Multiple Data Sources , 2015, PAKDD.

[66]  Svetha Venkatesh,et al.  Multi-modal abnormality detection in video with unknown data segmentation , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[67]  D. Rubin,et al.  Statistical Analysis with Missing Data , 1988 .

[68]  Rune Fensli,et al.  A wearable ECG-recording system for continuous arrhythmia monitoring in a wireless tele-home-care situation , 2005, 18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05).

[69]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[70]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[71]  Christopher D. Manning,et al.  The Infinite Tree , 2007, ACL.

[72]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[73]  Olivier Dousse,et al.  Place Learning via Direct WiFi Fingerprint Clustering , 2012, 2012 IEEE 13th International Conference on Mobile Data Management.

[74]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[75]  Jianwen Zhang,et al.  Evolutionary hierarchical dirichlet processes for multiple correlated time-varying corpora , 2010, KDD.

[76]  Svetha Venkatesh,et al.  Efficient duration and hierarchical modeling for human activity recognition , 2009, Artif. Intell..

[77]  Svetha Venkatesh,et al.  Topic transition detection using hierarchical hidden Markov and semi-Markov models , 2005, MULTIMEDIA '05.

[78]  Fanglin Chen,et al.  StudentLife: assessing mental health, academic performance and behavioral trends of college students using smartphones , 2014, UbiComp.

[79]  P. Diaconis,et al.  Conjugate Priors for Exponential Families , 1979 .

[80]  Trung Le,et al.  Discriminative Bayesian Nonparametric Clustering , 2017, IJCAI.

[81]  Marisa Maximiano,et al.  Internet of Things and Advanced Application in Healthcare , 2016 .

[82]  Bill N. Schilit,et al.  Context-aware computing applications , 1994, Workshop on Mobile Computing Systems and Applications.

[83]  Zoubin Ghahramani,et al.  Dirichlet Process Mixture Models for Verb Clustering , 2008 .

[84]  Daniel Gatica-Perez,et al.  StressSense: detecting stress in unconstrained acoustic environments using smartphones , 2012, UbiComp.

[85]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[86]  Alex Pentland,et al.  Using Social Sensing to Understand the Links between Sleep, Mood, and Sociability , 2011, 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing.

[87]  Dallas Price,et al.  How to read an electrocardiogram (ECG). Part 1: Basic principles of the ECG. The normal ECG , 2010 .

[88]  Mohan Kumar,et al.  High accuracy context recovery using clustering mechanisms , 2009, 2009 IEEE International Conference on Pervasive Computing and Communications.

[89]  Carl E. Rasmussen,et al.  Factorial Hidden Markov Models , 1997 .

[90]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[91]  Thad Starner,et al.  Using GPS to learn significant locations and predict movement across multiple users , 2003, Personal and Ubiquitous Computing.

[92]  Hans-Peter Kriegel,et al.  OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.

[93]  Qiang Yang,et al.  Estimating Location Using Wi-Fi , 2008, IEEE Intelligent Systems.

[94]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[95]  Dan Klein,et al.  The Infinite PCFG Using Hierarchical Dirichlet Processes , 2007, EMNLP.

[96]  Dimitrios I. Fotiadis,et al.  Heterogeneous data fusion and intelligent techniques embedded in a mobile application for real-time chronic disease management , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[97]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[98]  George B. Moody,et al.  A robust open-source algorithm to detect onset and duration of QRS complexes , 2003, Computers in Cardiology, 2003.

[99]  Daniel Gatica-Perez,et al.  Discovering human places of interest from multimodal mobile phone data , 2010, MUM.

[100]  M. Bishop,et al.  Maximum likelihood alignment of DNA sequences. , 1986, Journal of molecular biology.

[101]  Imad Aad,et al.  The Mobile Data Challenge: Big Data for Mobile Computing Research , 2012 .

[102]  D. Haussler,et al.  Hidden Markov models in computational biology. Applications to protein modeling. , 1993, Journal of molecular biology.

[103]  D. Gática-Pérez,et al.  Towards rich mobile phone datasets: Lausanne data collection campaign , 2010 .

[104]  Svetha Venkatesh,et al.  Extraction of social context and application to personal multimedia exploration , 2006, MM '06.

[105]  David B. Dunson,et al.  The dynamic hierarchical Dirichlet process , 2008, ICML '08.

[106]  J. Pitman Exchangeable and partially exchangeable random partitions , 1995 .

[107]  Mahadev Satyanarayanan,et al.  Pervasive computing: vision and challenges , 2001, IEEE Wirel. Commun..

[108]  B. V. K. Vijaya Kumar,et al.  Customizing the training dataset to an individual for improved heartbeat recognition performance in long-term ECG signals , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[109]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[110]  Svetha Venkatesh,et al.  Extraction of latent patterns and contexts from social honest signals using hierarchical Dirichlet processes , 2013, 2013 IEEE International Conference on Pervasive Computing and Communications (PerCom).

[111]  Mark Weiser,et al.  Some computer science issues in ubiquitous computing , 1993, CACM.

[112]  Daniel Gatica-Perez,et al.  GroupUs: Smartphone Proximity Data and Human Interaction Type Mining , 2011, 2011 15th Annual International Symposium on Wearable Computers.

[113]  Adrian Burns,et al.  SHIMMER™ – A Wireless Sensor Platform for Noninvasive Biomedical Research , 2010, IEEE Sensors Journal.

[114]  G.B. Moody,et al.  The impact of the MIT-BIH Arrhythmia Database , 2001, IEEE Engineering in Medicine and Biology Magazine.

[115]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[116]  Bill N. Schilit,et al.  Disseminating active map information to mobile hosts , 1994, IEEE Network.

[117]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .