Visibility and directions in quasicrystals

It is well known that a positive proportion of all points in a $d$-dimensional lattice is visible from the origin, and that these visible lattice points have constant density in $\mathbb{R}^d$. In the present paper we prove an analogous result for a large class of quasicrystals, including the vertex set of a Penrose tiling. We furthermore establish that the statistical properties of the directions of visible points are described by certain $\operatorname{SL}(d,\mathbb{R})$-invariant point processes. Our results imply in particular existence and continuity of the gap distribution for directions in certain two-dimensional cut-and-project sets. This answers some of the questions raised by Baake et al. in [arXiv:1402.2818].

[1]  Robert V. Moody,et al.  Model Sets: A Survey , 2000 .

[2]  M. Senechal Quasicrystals and geometry , 1995 .

[3]  S. Lang Algebraic Number Theory , 1971 .

[4]  A. Zaharescu,et al.  Distribution of Lattice Points Visible from the Origin , 2000 .

[5]  J. Marklof,et al.  Free Path Lengths in Quasicrystals , 2013, 1304.2044.

[6]  M. Schlottmann,et al.  Cut-and-project sets in locally compact Abelian groups , 1998 .

[7]  M. Raghunathan Discrete subgroups of Lie groups , 1972 .

[8]  Yves Meyer,et al.  Quasicrystals, Diophantine approximation and algebraic numbers , 1995 .

[9]  P. Pleasants Lines and Planes in 2- and 3-Dimensional Quasicrystals , 2002 .

[10]  Marina Ratner,et al.  Raghunathan’s topological conjecture and distributions of unipotent flows , 1991 .

[11]  André Weil,et al.  Basic number theory , 1967 .

[12]  J. Marklof,et al.  The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems , 2007, 0706.4395.

[13]  Michael Baake,et al.  Aperiodic Order. Vol 1. A Mathematical Invitation , 2013 .

[14]  Yves Meyer,et al.  Algebraic numbers and harmonic analysis , 1972 .

[15]  R. Moody Meyer Sets and Their Duals , 1997 .

[16]  Michael Baake,et al.  Aperiodic Order: Preliminaries , 2013 .

[17]  Michael Baake,et al.  A mathematical invitation , 2013 .

[18]  A. Hof Uniform distribution and the projection method , 1998 .

[19]  Helmut Hasse,et al.  Number Theory , 2020, An Introduction to Probabilistic Number Theory.

[20]  R. Moody Uniform Distribution in Model Sets , 2002, Canadian Mathematical Bulletin.

[21]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[22]  N. D. Bruijn Algebraic theory of Penrose''s non-periodic tilings , 1981 .

[23]  de Ng Dick Bruijn,et al.  Algebraic theory of Penrose's non-periodic tilings of the plane. II , 1981 .

[24]  Marina Ratner,et al.  On Raghunathan’s measure conjecture , 1991 .

[25]  F. Götze,et al.  Radial spacing distributions from planar point sets. , 2014, Acta crystallographica. Section A, Foundations and advances.

[26]  Robert V. Moody,et al.  The Mathematics of Long-Range Aperiodic Order , 1997 .

[27]  John W. Cahn,et al.  Quasicrystals , 2001, Journal of research of the National Institute of Standards and Technology.

[28]  Siegel measures , 1998, math/9811183.