Independent Movement, Dimerization and Stability of Tandem Repeats of Chicken Brain α-Spectrin

[1]  William J. Salerno,et al.  MONSTER: inferring non-covalent interactions in macromolecular structures from atomic coordinate data , 2004, Nucleic Acids Res..

[2]  A. Mondragón,et al.  Structural insights into the stability and flexibility of unusual erythroid spectrin repeats. , 2004, Structure.

[3]  R. Macdonald,et al.  Stabilities of folding of clustered, two-repeat fragments of spectrin reveal a potential hinge in the human erythroid spectrin tetramer. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Michael E. Johnson,et al.  Structural Analysis of the αN-Terminal Region of Erythroid and Nonerythroid Spectrins by Small-Angle X-ray Scattering† , 2003 .

[5]  Doug Barrick,et al.  Structure and stability of the ankyrin domain of the Drosophila Notch receptor , 2003, Protein science : a publication of the Protein Society.

[6]  Michael E. Johnson,et al.  Solution Structural Studies on Human Erythrocyte α-Spectrin Tetramerization Site* , 2003, Journal of Biological Chemistry.

[7]  N. Mohandas,et al.  Shear-Response of the Spectrin Dimer-Tetramer Equilibrium in the Red Blood Cell Membrane* , 2002, The Journal of Biological Chemistry.

[8]  M. Nilges,et al.  Pathways and intermediates in forced unfolding of spectrin repeats. , 2002, Structure.

[9]  R C Macdonald,et al.  Atomic force microscopy of the erythrocyte membrane skeleton , 2001, Journal of microscopy.

[10]  P. Luckham,et al.  Imaging erythrocytes under physiological conditions by atomic force microscopy. , 2001, Biochimica et biophysica acta.

[11]  D. Speicher,et al.  Role of terminal nonhomologous domains in initiation of human red cell spectrin dimerization. , 2001, Biochemistry.

[12]  M. Saraste,et al.  Crystal Structure of the α-Actinin Rod Reveals an Extensive Torsional Twist , 2001 .

[13]  A. Baines,et al.  Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. , 2001, Physiological reviews.

[14]  E. Pozharski,et al.  Free energies of urea and of thermal unfolding show that two tandem repeats of spectrin are thermodynamically more stable than a single repeat. , 2001, Biochemistry.

[15]  J. Morrow,et al.  Spectrin tethers and mesh in the biosynthetic pathway. , 2000, Journal of cell science.

[16]  M Karplus,et al.  Unfolding proteins by external forces and temperature: the importance of topology and energetics. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[17]  D Thirumalai,et al.  Mechanisms and kinetics of beta-hairpin formation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[18]  D. Speicher,et al.  Initiation of Spectrin Dimerization Involves Complementary Electrostatic Interactions between Paired Triple-helical Bundles* , 2000, The Journal of Biological Chemistry.

[19]  Paul Young,et al.  Molecular Basis for Cross-Linking of Actin Filaments: Structure of the α-Actinin Rod , 1999, Cell.

[20]  Alfonso Mondragón,et al.  Structures of Two Repeats of Spectrin Suggest Models of Flexibility , 1999, Cell.

[21]  M. Zółkiewski,et al.  Flexibility of Acanthamoeba myosin rod minifilaments. , 1999, Biochemistry.

[22]  Anastassis Perrakis,et al.  Automated protein model building combined with iterative structure refinement , 1999, Nature Structural Biology.

[23]  R M Esnouf,et al.  Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. , 1999, Acta crystallographica. Section D, Biological crystallography.

[24]  Thomas C. Terwilliger,et al.  Automated MAD and MIR structure solution , 1999, Acta crystallographica. Section D, Biological crystallography.

[25]  T. Keiderling,et al.  Ionic strength effect on the thermal unfolding of α-spectrin peptides , 1998 .

[26]  D. Boal,et al.  Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. , 1998, Biophysical journal.

[27]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[28]  A. Kusumi,et al.  Structure of the erythrocyte membrane skeleton as observed by atomic force microscopy. , 1998, Biophysical journal.

[29]  G J Kleywegt,et al.  Not your average density. , 1997, Structure.

[30]  D. Pantazatos,et al.  Site-directed Mutagenesis of Either the Highly Conserved Trp-22 or the Moderately Conserved Trp-95 to a Large, Hydrophobic Residue Reduces the Thermodynamic Stability of a Spectrin Repeating Unit* , 1997, The Journal of Biological Chemistry.

[31]  M. Zółkiewski,et al.  Two-state thermal unfolding of a long dimeric coiled-coil: the Acanthamoeba myosin II rod. , 1997, Biochemistry.

[32]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[33]  P. Andrew Karplus,et al.  Improved R-factors for diffraction data analysis in macromolecular crystallography , 1997, Nature Structural Biology.

[34]  N. Menhart,et al.  Peptides with More than One 106-amino Acid Sequence Motif Are Needed to Mimic the Structural Stability of Spectrin* , 1996, The Journal of Biological Chemistry.

[35]  D. Speicher,et al.  Mapping the Human Erythrocyte -Spectrin Dimer Initiation Site Using Recombinant Peptides and Correlation of Its Phasing with the -Actinin Dimer Site (*) , 1996, The Journal of Biological Chemistry.

[36]  A J Rowe,et al.  Association of structural repeats in the alpha-actinin rod domain. Alignment of inter-subunit interactions. , 1995, Journal of molecular biology.

[37]  E. Evans,et al.  Molecular maps of red cell deformation: hidden elasticity and in situ connectivity. , 1994, Science.

[38]  E A Merritt,et al.  Raster3D Version 2.0. A program for photorealistic molecular graphics. , 1994, Acta crystallographica. Section D, Biological crystallography.

[39]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[40]  E. Pednault,et al.  Nucleic acid structure analysis. Mathematics for local Cartesian and helical structure parameters that are truly comparable between structures. , 1994, Journal of molecular biology.

[41]  Wolfgang Kabsch,et al.  Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants , 1993 .

[42]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[43]  D. Speicher,et al.  Location of the human red cell spectrin tetramer binding site and detection of a related "closed" hairpin loop dimer using proteolytic footprinting. , 1993, The Journal of biological chemistry.

[44]  R F Standaert,et al.  Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. , 1993, Journal of molecular biology.

[45]  D. Speicher,et al.  Properties of human red cell spectrin heterodimer (side-to-side) assembly and identification of an essential nucleation site. , 1992, The Journal of biological chemistry.

[46]  D A Parry,et al.  Analysis of the three-alpha-helix motif in the spectrin superfamily of proteins. , 1992, Biophysical journal.

[47]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[48]  H. Yoshino,et al.  Characterization of the lateral interaction between human erythrocyte spectrin subunits. , 1991, Journal of biochemistry.

[49]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[50]  M. Saraste,et al.  Primary structure of the brain alpha-spectrin [published erratum appears in J Cell Biol 1989 Mar;108(3):following 1175] , 1989, The Journal of cell biology.

[51]  A. Blanchard,et al.  The structure and function of α-actinin , 1987, Journal of Muscle Research & Cell Motility.

[52]  R Josephs,et al.  Ultrastructure of the intact skeleton of the human erythrocyte membrane , 1986, The Journal of cell biology.

[53]  Vincent T. Marchesi,et al.  Erythrocyte spectrin is comprised of many homologous triple helical segments , 1984, Nature.

[54]  V. Marchesi,et al.  Isolation of spectrin subunits and reassociation in vitro. Analysis by fluorescence polarization. , 1984, The Journal of biological chemistry.

[55]  V. Marchesi,et al.  Self-assembly of spectrin oligomers in vitro: a basis for a dynamic cytoskeleton , 1981, The Journal of cell biology.

[56]  D. Speicher,et al.  Identification of functional domains of human erythrocyte spectrin. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[57]  D M Shotton,et al.  The molecular structure of human erythrocyte spectrin. Biophysical and electron microscopic studies. , 1979, Journal of molecular biology.

[58]  L. Erickson,et al.  Calorimetric studies of the structural transitions of the human erythrocyte membrane. The involvement of spectrin in the A transition. , 1977, Biochemistry.

[59]  Norma J Greenfield,et al.  Analysis of Circular Dichroism Data , 2004, Numerical Computer Methods, Part D.

[60]  Thomas C Terwilliger,et al.  SOLVE and RESOLVE: automated structure solution and density modification. , 2003, Methods in enzymology.

[61]  Mark Gerstein,et al.  Tools and databases to analyze protein flexibility; approaches to mapping implied features onto sequences. , 2003, Methods in enzymology.

[62]  Dennis E Discher,et al.  Cooperativity in forced unfolding of tandem spectrin repeats. , 2003, Biophysical journal.

[63]  S. T. Thomas,et al.  Heat capacity change for ribonuclease A folding , 1999, Protein science : a publication of the Protein Society.

[64]  A. Rowe,et al.  Further analysis of the role of spectrin repeat motifs in α-actinin dimer formation , 1997, European Biophysics Journal.

[65]  G. Bricogne,et al.  [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. , 1997, Methods in enzymology.

[66]  J. Abrahams,et al.  Methods used in the structure determination of bovine mitochondrial F1 ATPase. , 1996, Acta crystallographica. Section D, Biological crystallography.

[67]  S. Lux Disorders of the red cell membrane , 1995 .

[68]  Samuel E. Lux,et al.  Blood: Principles and Practice of Hematology , 1995 .

[69]  E. Evans,et al.  Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. , 1994, Annual review of biophysics and biomolecular structure.

[70]  J. Wade,et al.  Ultrastructure and immunocytochemistry of the isolated human erythrocyte membrane skeleton. , 1993, Cell motility and the cytoskeleton.

[71]  J. Wade,et al.  Ultrastructure of the human erythrocyte cytoskeleton and its attachment to the membrane. , 1991, Cell motility and the cytoskeleton.

[72]  F. Studier,et al.  Use of T7 RNA polymerase to direct expression of cloned genes. , 1990, Methods in enzymology.