A survey of cryptographic approaches to securing big-data analytics in the cloud

The growing demand for cloud computing motivates the need to study the security of data received, stored, processed, and transmitted by a cloud. In this paper, we present a framework for such a study. We introduce a cloud computing model that captures a rich class of big-data use-cases and allows reasoning about relevant threats and security goals. We then survey three cryptographic techniques - homomorphic encryption, verifiable computation, and multi-party computation - that can be used to achieve these goals. We describe the cryptographic techniques in the context of our cloud model and highlight the differences in performance cost associated with each.

[1]  Marcel Keller,et al.  An architecture for practical actively secure MPC with dishonest majority , 2013, IACR Cryptol. ePrint Arch..

[2]  Craig Gentry,et al.  Fully Homomorphic Encryption with Polylog Overhead , 2012, EUROCRYPT.

[3]  Zvika Brakerski,et al.  Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP , 2012, CRYPTO.

[4]  Craig Gentry,et al.  Homomorphic Evaluation of the AES Circuit , 2012, IACR Cryptol. ePrint Arch..

[5]  Andrew Chi-Chih Yao,et al.  Protocols for Secure Computations (Extended Abstract) , 1982, FOCS.

[6]  Craig Gentry,et al.  Pinocchio: Nearly Practical Verifiable Computation , 2013, 2013 IEEE Symposium on Security and Privacy.

[7]  Shai Halevi,et al.  Algorithms in HElib , 2014, CRYPTO.

[8]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[9]  Ivan Damgård,et al.  Secure Multiparty Computation Goes Live , 2009, Financial Cryptography.

[10]  Sanjeev Arora,et al.  Probabilistic checking of proofs: a new characterization of NP , 1998, JACM.

[11]  Ivan Damgård,et al.  Multiparty Computation from Somewhat Homomorphic Encryption , 2012, IACR Cryptol. ePrint Arch..

[12]  Jeremy Kepner,et al.  Taming Biological Big Data with D 4 M , 2013 .

[13]  Taher El Gamal A public key cryptosystem and a signature scheme based on discrete logarithms , 1984, IEEE Trans. Inf. Theory.

[14]  Craig Gentry,et al.  (Leveled) fully homomorphic encryption without bootstrapping , 2012, ITCS '12.

[15]  Avi Wigderson,et al.  Completeness theorems for non-cryptographic fault-tolerant distributed computation , 1988, STOC '88.

[16]  Craig Gentry,et al.  Packed Ciphertexts in LWE-Based Homomorphic Encryption , 2013, Public Key Cryptography.

[17]  Eli Ben-Sasson,et al.  Succinct Non-Interactive Arguments for a von Neumann Architecture , 2013, IACR Cryptol. ePrint Arch..

[18]  Yehuda Lindell,et al.  SCAPI: The Secure Computation Application Programming Interface , 2012, IACR Cryptol. ePrint Arch..

[19]  Silvio Micali,et al.  How to play ANY mental game , 1987, STOC.

[20]  Xenofontas A. Dimitropoulos,et al.  SEPIA: Privacy-Preserving Aggregation of Multi-Domain Network Events and Statistics , 2010, USENIX Security Symposium.

[21]  Craig Gentry,et al.  Field switching in BGV-style homomorphic encryption , 2013, J. Comput. Secur..

[22]  Craig Gentry,et al.  A fully homomorphic encryption scheme , 2009 .

[23]  Marcel Keller,et al.  Secure Multiparty AES , 2010, Financial Cryptography.

[24]  Dan Bogdanov,et al.  Sharemind: A Framework for Fast Privacy-Preserving Computations , 2008, ESORICS.

[25]  Brent Waters,et al.  Functional Encryption: Definitions and Challenges , 2011, TCC.

[26]  P. Mell,et al.  The NIST Definition of Cloud Computing , 2011 .

[27]  Brent Waters,et al.  Fuzzy Identity-Based Encryption , 2005, EUROCRYPT.

[28]  David Chaum,et al.  Multiparty unconditionally secure protocols , 1988, STOC '88.

[29]  Silvio Micali,et al.  CS proofs , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[30]  David Chaum,et al.  Multiparty Unconditionally Secure Protocols (Abstract) , 1987, CRYPTO.

[31]  Dan Bogdanov,et al.  Secure multi-party data analysis: end user validation and practical experiments , 2013, IACR Cryptol. ePrint Arch..