Large amplitude fluxional behaviour of elemental calcium under high pressure

Experimental evidences are presented showing unusually large and highly anisotropic vibrations in the “simple cubic” (SC) unit cell adopted by calcium over a broad pressure ranging from 30–90 GPa and at temperature as low as 40 K. X-ray diffraction patterns show a preferential broadening of the (110) Bragg reflection indicating that the atomic displacements are not isotropic but restricted to the [110] plane. The unusual observation can be rationalized invoking a simple chemical perspective. As the result of pressure-induced s → d transition, Ca atoms situated in the octahedral environment of the simple cubic structure are subjected to Jahn-Teller distortions. First-principles molecular dynamics calculations confirm this suggestion and show that the distortion is of dynamical nature as the cubic unit cell undergoes large amplitude tetragonal fluctuations. The present results show that, even under extreme compression, the atomic configuration is highly fluxional as it constantly changes.

[1]  Yanli Wang,et al.  Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009 .

[2]  M. McMahon,et al.  Incommensurate crystal structures in the elements at high pressure , 2004 .

[3]  D. Allan,et al.  SELF-HOSTING INCOMMENSURATE STRUCTURE OF BARIUM IV , 1999 .

[4]  Y. Grin,et al.  Experimental confirmation of the stability and chemical bonding analysis of the high-pressure phases Ca-I, II, and III at pressures up to 52 GPa , 2009 .

[5]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  K. Shimizu,et al.  Crystal structures of calcium IV and V under high pressure. , 2008, Physical review letters.

[7]  T. Sabine A powder diffractometer for a synchrotron source , 1987 .

[8]  H. Olijnyk,et al.  Phase transitions in alkaline earth metals under pressure , 1984 .

[9]  R. Sternheimer On the Compressibility of Metallic Cesium , 1949 .

[10]  K. Shimizu,et al.  Ca-VI: A high-pressure phase of calcium above 158 GPa , 2010 .

[11]  Y. Ohishi,et al.  Highly intense monochromatic X-ray diffraction facility for high-pressure research at SPring-8 , 2008 .

[12]  D. Klug,et al.  Stability of simple cubic calcium at high pressure: A first-principles study , 2010 .

[13]  Exotic behavior and crystal structures of calcium under pressure , 2010, Proceedings of the National Academy of Sciences.

[14]  Electronic structures, lattice dynamics, and electron phonon coupling of simple cubic Ca under pressure , 2008 .

[15]  A. K. Mohanty,et al.  A First Principles Study , 2012 .

[16]  K. Shimizu,et al.  Superconductivity of Ca exceeding 25 K at megabar pressures , 2006 .

[17]  A. Jayaraman,et al.  PHASE DIAGRAMS OF CALCIUM AND STRONTIUM AT HIGH PRESSURES , 1963 .

[18]  S. Bonev,et al.  High-pressure phases of calcium: density-functional theory and diffusion quantum Monte Carlo approach. , 2010, Physical review letters.

[19]  S. Sinogeikin,et al.  Distortions and stabilization of simple-cubic calcium at high pressure and low temperature , 2010, Proceedings of the National Academy of Sciences.

[20]  M. McMahon,et al.  High-pressure structures and phase transformations in elemental metals. , 2006, Chemical Society reviews.

[21]  A. Bergara,et al.  Anharmonic stabilization of the high-pressure simple cubic phase of calcium. , 2011, Physical review letters.

[22]  H. A. Jahn,et al.  Stability of Polyatomic Molecules in Degenerate Electronic States. I. Orbital Degeneracy , 1937 .

[23]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[24]  O. Shimomura,et al.  X-Ray Diffraction Study of Electronic Transitions in Cesium under High Pressure , 1982 .

[25]  Isaac B. Bersuker,et al.  The Jahn-Teller Effect , 2006 .

[26]  J. Smith,et al.  Coefficients of thermal expansion for face-centered cubic and body-centered cubic calcium , 1959 .

[27]  Reinhard Nesper,et al.  How Nature Adapts Chemical Structures to Curved Surfaces , 1987 .

[28]  D. Klug,et al.  Structural prediction and phase transformation mechanisms in calcium at high pressure. , 2009, Physical review letters.

[29]  Donald G. Truhlar,et al.  Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods , 2010 .

[30]  Yanming Ma,et al.  Ab initio determination of crystal lattice constants and thermal expansion for germanium isotopes , 2007 .

[31]  Olle Eriksson,et al.  The self-consistent ab initio lattice dynamical method , 2009 .

[32]  Jian Sun,et al.  Structures and superconducting properties of the high-pressure IV and V phases of calcium from first principles , 2008 .

[33]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[34]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[35]  A. Oganov,et al.  Fermi surface nesting and phonon instabilities in simple cubic calcium , 2008 .