| Microbiology for Minerals, Metals, Materials and the Environment | Taylor & Francis Group

[1]  C Ribbing,et al.  Environmentally friendly use of non-coal ashes in Sweden. , 2007, Waste management.

[2]  Å. Sandström,et al.  Use of mesalime and electric arc furnace (EAF) dust as neutralising agents in biooxidation and their effects on gold recovery in subsequent cyanidation , 2010 .

[3]  Å. Sandström,et al.  Bioleaching of a complex sulphide ore with moderate thermophilic and extreme thermophilic microorganisms , 1997 .

[4]  D. Rawlings,et al.  Biomineralization of metal-containing ores and concentrates. , 2003, Trends in biotechnology.

[5]  C. L. Brierley,et al.  Bioleaching review part B: , 2003, Applied Microbiology and Biotechnology.

[6]  Robert S. Hedin,et al.  Passive Treatment of Acid Mine Drainage with Limestone , 1994 .

[7]  David John Readett BIOTECHNOLOGY IN THE MINING INDUSTRY - Straits Resources Limited AndThe Industrial Practice Of Copper Bioleaching In Heaps , 2001 .

[8]  Shaoyuan Shi,et al.  Bioleaching of marmatite flotation concentrate with a moderately thermoacidophilic iron-oxidizing bacterial strain , 2005 .

[9]  C. L. Brierley,et al.  Present and future commercial applications of biohydrometallurgy , 2001 .

[10]  Å. Sandström,et al.  Modeling of ferrous iron oxidation by a Leptospirillum ferrooxidans‐dominated chemostat culture , 2008, Biotechnology and bioengineering.

[11]  A. Haines,et al.  Developments and innovations in bacterial oxidation of refractory ores , 1991 .

[12]  E. Meux,et al.  Hydrometallurgical recovery of zinc and lead from electric arc furnace dust using mononitrilotriacetate anion and hexahydrated ferric chloride. , 2002, Journal of hazardous materials.

[13]  P. Franzmann,et al.  The Microbiology of Moderately Thermophilic and Transiently Thermophilic Ore Heaps , 2007 .

[14]  R. E. Hughes,et al.  Formation and use of coal combustion residues from three types of power plants burning Illinois coals , 2001 .

[15]  M. L. Cunha,et al.  Leaching Behaviour of Industrial Oxidic By-Products: Possibilities to Use as Neutralisation Agent in Bioleaching , 2008 .

[16]  The Sociedad Minera Pudahuel bacterial thin-layer leaching process at Lo Aguirre , 1993 .

[17]  A. Walter,et al.  Hydrofluoric and nitric acid transport through lipid bilayer membranes. , 1981, Biochimica et biophysica acta.

[18]  J. V. Niekerk,et al.  Biooxidation of arsenopyrite concentrate using BIOX® process : Industrial experience in Tamboraque, Peru , 2006 .

[19]  M. L. Cunha,et al.  Possibilities to use oxidic by-products for precipitation of Fe/As from leaching solutions for subsequent base metal recovery , 2008 .

[20]  Å. Sandström,et al.  A study on the toxic effects of chloride on the biooxidation efficiency of pyrite. , 2009, Journal of hazardous materials.

[21]  P. Norris Acidophile Diversity in Mineral Sulfide Oxidation , 2007 .

[22]  R. Hallberg,et al.  A fly ash/biosludge dry cover for the mitigation of AMD at the falun mine , 2005 .

[23]  Xiaoyue Liu,et al.  Evaluation of process variables in bench-scale bio-oxidation of the Olympias concentrate , 1993 .

[24]  Chandra Sekhar Gahan,et al.  Comparative study on different steel slags as neutralising agent in bioleaching , 2009 .

[25]  Å. Sandström,et al.  Utilisation of steel slags as neutralising agents in biooxidation of a refractory gold concentrate and their influence on the subsequent cyanidation , 2011 .

[26]  D Barrie Johnson,et al.  The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. , 2007, Microbiology.

[27]  J. T. Woodcock,et al.  Water leaching and magnetic separation for decreasing the chloride level and upgrading the zinc content of EAF steelmaking baghouse dusts , 2005 .

[28]  Ivo André Homrich Schneider,et al.  Hydrometallurgical processing of carbon steel EAF dust. , 2006, Journal of hazardous materials.

[29]  W. Sand,et al.  Bacterial Leaching of Metal Sulfides Proceeds by Two Indirect Mechanisms via Thiosulfate or via Polysulfides and Sulfur , 1999, Applied and Environmental Microbiology.

[30]  Antonio Ballester,et al.  New information on the chalcopyrite bioleaching mechanism at low and high temperature , 2003 .

[31]  H. Tributsch,et al.  Reasons why 'Leptospirillum'-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. , 1999, Microbiology.

[32]  Å. Sandström,et al.  A sequential two-step process using moderately and extremely thermophilic cultures for biooxidation of refractory gold concentrates , 2003 .