Modeling of ionospheric perturbation by 2004 Sumatra tsunami

[1] A complete model is proposed to analyze the electron density perturbation caused by tsunami-induced gravity waves. Loss mechanisms of thermal conduction, viscosity, and ion drag are considered in deriving the dispersion relation of the atmospheric gravity waves (AGWs). This model is then used to analyze the electron density perturbation in the ionosphere caused by the Sumatra tsunami on 26 December 2004. It is found that the AGWs move horizontally at the same speed with that of the tsunami and are trapped at about 400 km high. The simulation results well explain that about 13 min after the tsunami triggers AGWs, electron density perturbation in the ionosphere can be detected by satellites that pass over.

[1]  K. C. Yeh,et al.  Theory of Ionospheric Waves , 1973 .

[2]  Vasily Titov,et al.  The Global Reach of the 26 December 2004 Sumatra Tsunami , 2005, Science.

[3]  Philippe Lognonné,et al.  Geomagnetic dependence of ionospheric disturbances induced by tsunamigenic internal gravity waves , 2007 .

[4]  N. Kotake,et al.  GPS detection of total electron content variations over Indonesia and Thailand following the 26 December 2004 earthquake , 2006 .

[5]  William H. Hooke,et al.  Ionospheric irregularities produced by internal atmospheric gravity waves , 1968 .

[6]  R. Walterscheid,et al.  The perturbed neutral circulation in the vicinity of a symmetric stable auroral arc , 1985 .

[7]  J. P. Friedman Propagation of Internal Gravity Waves in a Thermally Stratified Atmosphere , 1966 .

[8]  Jim Gower,et al.  The 26 December 2004 tsunami measured by satellite altimetry , 2007 .

[9]  Anthony Sladen,et al.  Numerical Modeling of the Great 2004 Indian Ocean Tsunami: Focus on the Mascarene Islands , 2007 .

[10]  Alexander Dalgarno,et al.  The mobilities of ions in unlike gases , 1958, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[11]  R. Turco,et al.  Thermospheric response to morningside diffuse aurora: High-resolution three-dimensional simulations , 1995 .

[12]  E. L. Afraimovich,et al.  The shock-acoustic waves generated by earthquakes , 2001 .

[13]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[14]  Jim Gower Jason 1 detects the 26 December 2004 tsunami , 2005 .

[15]  J. Midgley,et al.  Gravity waves in a realistic atmosphere , 1966 .

[16]  Dieter Bilitza,et al.  International reference ionosphere , 1978 .

[17]  J. Bernard Minster,et al.  GPS, Earthquakes, the Ionosphere, and the Space Shuttle , 1998 .

[18]  F. J. Smith,et al.  The thermal conductivity and viscosity of atomic oxygen , 1962 .

[19]  H. Volland The upper atmosphere as a multiply refractive medium for neutral air motions , 1968 .

[20]  A. Furumoto,et al.  Continuous, traveling coupling between seismic waves and the ionosphere evident in May 1968 Japan earthquake data , 1969 .

[21]  Raphaël F. Garcia,et al.  Tsunami detection in the ionosphere , 2005 .

[22]  Dieter Bilitza,et al.  International reference ionosphere 1990 , 1992 .

[23]  High resolution altimetry reveals new characteristics of the December 2004 Indian Ocean tsunami , 2006 .

[24]  C. O. Hines,et al.  On the possible detection of tsunamis by a monitoring of the ionosphere , 1976 .

[25]  Chien-Ping Lee,et al.  Ionospheric GPS total electron content (TEC) disturbances triggered by the 26 December 2004 Indian Ocean tsunami , 2006 .

[26]  C. Hines INTERNAL ATMOSPHERIC GRAVITY WAVES AT IONOSPHERIC HEIGHTS , 1960 .

[27]  K. Najita,et al.  Long‐period oceanic rayleigh wave group velocity dispersion curve from HF Doppler sounding of the ionosphere , 1979 .

[28]  Hélène Hébert,et al.  Three‐dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami , 2006 .

[29]  K. Yeh,et al.  Effect of ion drag on propagation of acoustic-gravity waves in the atmospheric F region. , 1969 .

[30]  Raphaël F. Garcia,et al.  Three-dimensional ionospheric tomography of post-seismic perturbations produced by the Denali earthquake from GPS data , 2005 .

[31]  T. Maruyama,et al.  A numerical simulation of ionospheric and atmospheric variations associated with the Sumatra earthquake on December 26, 2004 , 2007 .

[32]  G. Sofko,et al.  Numerical simulations of midlatitude ionospheric perturbations produced by gravity waves , 1998 .

[33]  F. B. Daniels Acoustical Energy Generated by the Ocean Waves , 1952 .

[34]  Vasily Titov,et al.  Numerical Modeling of Tidal Wave Runup , 1998 .

[35]  S. Vadas Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources , 2007 .

[36]  Remko Scharroo,et al.  Satellite Altimeters Measure Tsunami—Early Model Estimates Confirmed , 2005 .

[37]  Carl Eckart,et al.  Hydrodynamics of oceans and atmospheres , 1960 .

[38]  Remko Scharroo,et al.  Satellite Altimeters Measure Tsunami , 2005 .

[39]  H. Rishbeth,et al.  Equilibrium electron distributions in the ionospheric F2-layer , 1960 .

[40]  C. Liu,et al.  Giant ionospheric disturbances excited by the M9.3 Sumatra earthquake of 26 December 2004 , 2006 .

[41]  V. Starr Physics of Negative Viscosity Phenomena , 1968 .

[42]  Philippe Lognonné,et al.  Ionospheric remote sensing of the Denali Earthquake Rayleigh surface waves , 2003 .

[43]  C. Mader Numerical modeling of water waves , 1979 .

[44]  P. Weaver,et al.  A tsunami warning system using an ionospheric technique , 1974 .

[45]  Farzad Kamalabadi,et al.  Three‐dimensional tomography of ionospheric variability using a dense GPS receiver array , 2008 .

[46]  Ronald V. Row,et al.  Acoustic‐gravity waves in the upper atmosphere due to a nuclear detonation and an earthquake , 1967 .

[47]  H. Kanamori,et al.  Ionospheric detection of gravity waves induced by tsunamis , 2005 .

[48]  S. Vadas,et al.  Influence of solar variability on gravity wave structure and dissipation in the thermosphere from tropospheric convection , 2006 .

[49]  C. Hines An effect of molecular dissipation in upper atmospheric gravity waves , 1968 .

[50]  C. Nappo An introduction to atmospheric gravity waves , 2002 .

[51]  G. Thome Incoherent scatter observations of traveling ionospheric disturbances , 1964 .

[52]  V. Ducic,et al.  3 D ionospheric tomography of post-seismic perturbations produced by the Denali earthquake from GPS data , 2022 .

[53]  S. Oyama,et al.  A two-dimensional simulation of thermospheric vertical winds in the vicinity of an auroral arc , 2006 .

[54]  Philippe Lognonné,et al.  Acoustic waves generated from seismic surface waves: propagation properties determined from Doppler sounding observations and normal-mode modelling , 2004 .

[55]  R. Walterscheid,et al.  The neutral circulation in the vicinity of a stable auroral arc , 1992 .

[56]  S. Vadas,et al.  Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity , 2005 .

[57]  F. White Viscous Fluid Flow , 1974 .

[58]  Bodo W. Reinisch,et al.  International Reference Ionosphere 2000 , 2001 .

[59]  R. Schunk,et al.  Ionospheres of the terrestrial planets , 1980 .

[60]  C. Hines Hydromagnetic Resonance in Ionospheric Waves , 1955 .

[61]  Eric Jeansou,et al.  Ground-based GPS imaging of ionospheric post-seismic signal , 2006 .