Describing Periodicity in Two-Way Deterministic Finite Automata Using Transformation Semigroups

A framework for the study of periodic behaviour of two-way deterministic finite automata (2DFA) is developed. Computations of 2DFAs are represented by a two-way analogue of transformation semigroups, every element of which describes the behaviour of a 2DFA on a certain string x. A subsemigroup generated by this element represents the behaviour on strings in x+. The main contribution of this paper is a description of all such monogenic subsemigroups up to isomorphism. This characterization is then used to show that transforming an n-state 2DFA over a one-letter alphabet to an equivalent sweeping 2DFA requires exactly n+1 states, and transforming it to a one-way automaton requires exactly max0≤l≤n G(n - l) + l + 1 states, where G(k) is the maximum order of a permutation of k elements.

[1]  Martin Kutrib,et al.  Descriptional and Computational Complexity of Finite Automata , 2009, LATA.

[2]  Michael Sipser,et al.  Lower bounds on the size of sweeping automata , 1979, J. Comput. Syst. Sci..

[3]  Piotr Berman A Note on Sweeping Automata , 1980, ICALP.

[4]  Silvio Micali,et al.  Two-Way Deterministic Finite Automata are Exponentially More Succinct Than Sweeping Automata , 1981, Inf. Process. Lett..

[5]  FRANK R. MOORE,et al.  On the Bounds for State-Set Size in the Proofs of Equivalence Between Deterministic, Nondeterministic, and Two-Way Finite Automata , 1971, IEEE Transactions on Computers.

[6]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[7]  Jean-Camille Birget Concatenation of Inputs in a Two-Way Automaton , 1989, Theor. Comput. Sci..

[8]  Marek Chrobak,et al.  Errata to: "finite automata and unary languages" , 2003 .

[9]  Grzegorz Rozenberg,et al.  Developments in Language Theory II , 2002 .

[10]  John C. Shepherdson,et al.  The Reduction of Two-Way Automata to One-Way Automata , 1959, IBM J. Res. Dev..

[11]  Moshe Y. Vardi A Note on the Reduction of Two-Way Automata to One-Way Automata , 1989, Inf. Process. Lett..

[12]  Dominique Perrin,et al.  Finite Automata , 1958, Philosophy.

[13]  Carlo Mereghetti,et al.  Two-Way Automata Simulations and Unary Languages , 2000, J. Autom. Lang. Comb..

[14]  Christos A. Kapoutsis Removing Bidirectionality from Nondeterministic Finite Automata , 2005, MFCS.

[15]  Marek Chrobak,et al.  Finite Automata and Unary Languages , 1986, Theor. Comput. Sci..

[16]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[17]  Michel Rigo,et al.  Abstract numeration systems and tilings , 2005 .

[18]  Carlo Mereghetti,et al.  Converting Two-Way Nondeterministic Unary Automata into Simpler Automata , 2001, MFCS.

[19]  Dana S. Scott,et al.  Finite Automata and Their Decision Problems , 1959, IBM J. Res. Dev..

[20]  Carlo Mereghetti,et al.  Optimal Simulations Between Unary Automata , 1998, STACS.

[21]  William J. Sakoda,et al.  Nondeterminism and the size of two way finite automata , 1978, STOC.

[22]  Wojciech Rytter,et al.  On the Maximal Number of Cubic Runs in a String , 2010, LATA.