Vibrational phase and energy relaxation of CN− in water

Classical molecular dynamics simulations complemented with semiclassical perturbation theory have been applied to the study of the cyanide ion vibrational relaxation in liquid water. The model provides reasonable agreement with known experimental results as well as with ab initio calculations for small clusters. The role of Coulomb and non-Coulomb forces is studied in detail. A dominant role of the former in the vibrational energy (population) relaxation is found, while in contrast, the bandshape—and thus the dephasing—are determined by both forces. Further, and at variance with existing theories, the present model provides the first example in which nonlinear intermolecular terms in the vibration-solvent coupling are critical in the instantaneous frequency shift.

[1]  Arnold Migus,et al.  Ultrafast Phenomena VIII , 1993 .

[2]  R. Hochstrasser,et al.  Vibrational relaxation dynamics in solutions. , 1994, Annual review of physical chemistry.

[3]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[4]  R. Hochstrasser,et al.  Determination of the vibrational energy relaxation time of the azide ion in protic solvents by two-color transient infrared spectroscopy , 1991 .

[5]  R. Hochstrasser,et al.  Vibrational energy relaxation of the cyanide ion in aqueous solution , 1982 .

[6]  D. Lévesque,et al.  A molecular dynamics simulation of dephasing in liquid nitrogen. II. Effect of the pair potential on dephasing , 1980 .

[7]  J. Weis,et al.  Density dependence of the dephasing and energy relaxation times by computer simulations , 1986 .

[8]  B. C. Garrett,et al.  Photoelectron spectra of the hydrated iodine anion from molecular dynamics simulations , 1993 .

[9]  D. Oxtoby Vibrational Relaxation in Liquids , 1972 .

[10]  T. Asada,et al.  Structural features for hydrated CN− clusters at room temperature , 1996 .

[11]  Joel S. Bader,et al.  Quantum and classical relaxation rates from classical simulations , 1994 .

[12]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[13]  Y. Maréchal Infrared spectra of water. I. Effect of temperature and of H/D isotopic dilution , 1991 .

[14]  W. Schindler,et al.  Density and temperature effects on vibrational phase relaxation and frequency shifts in liquid isobutylene , 1980 .

[15]  E. Clementi,et al.  Molecular dynamics simulations with a flexible and polarizable potential: Density of states for liquid water at different temperatures , 1993 .

[16]  A. M. Levine,et al.  Hamiltonian theory for vibrational dephasing rates of small molecules in liquids , 1988 .

[17]  R. Gordon,et al.  Density‐functional theory for the solid alkali cyanides , 1982 .

[18]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[19]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[20]  J. Hynes,et al.  Vibrational relaxation times for a model hydrogen-bonded complex in a polar solvent , 1993 .

[21]  B. Berne,et al.  Vibrational Relaxation of Diatomic Molecules in Gases and Liquids , 1967 .

[22]  D. Lévesque,et al.  A molecular dynamics simulation of dephasing in liquid nitrogen , 1978 .

[23]  R. Hochstrasser,et al.  Vibrational and rotational relaxation times of solvated molecular ions , 1993 .

[24]  I. Benjamin,et al.  Vibrational relaxation of I−2 in water and ethanol: molecular dynamics simulation , 1993 .

[25]  Mark E. Tuckerman,et al.  Vibrational relaxation in simple fluids: Comparison of theory and simulation , 1993 .

[26]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[27]  M. Berkowitz,et al.  Theory of vibrational relaxation in solids: The competition between local phonon and roton receiving modes , 1979 .

[28]  P. Botschwina Spectroscopic properties of the cyanide ion calculated by SCEP CEPA , 1985 .

[29]  James G. Fujimoto,et al.  Ultrafast Phenomena X , 1996 .

[30]  J. Hynes,et al.  Vibrational relaxation of a dipolar molecule in water , 1992 .

[31]  I. R. Mcdonald,et al.  Spectroscopic and molecular dynamics studies of solvation of cyanomethane and cyanide ions , 1988 .

[32]  D. Oxtoby Hydrodynamic theory for vibrational dephasing in liquids , 1979 .

[33]  D. Chandler,et al.  Vibrational dephasing and frequency shifts of polyatomic molecules in solution , 1982 .

[34]  B. R. Johnson New numerical methods applied to solving the one‐dimensional eigenvalue problem , 1977 .

[35]  Kent R. Wilson,et al.  Nonequilibrium solvation effects on reaction rates for model SN2 reactions in water , 1989 .

[36]  William L. Jorgensen,et al.  Temperature and size dependence for Monte Carlo simulations of TIP4P water , 1985 .

[37]  R. Levy,et al.  Vibrational relaxation and Bloch–Redfield theory , 1992 .

[38]  G. Voth,et al.  Vibrational energy relaxation of Si-H stretching modes on the H/Si(111)1×1 surface , 1993 .

[39]  Rossend Rey,et al.  Vibrational energy relaxation of HOD in liquid D2O , 1996 .

[40]  B. Berne,et al.  Monte Carlo simulation of solvent effects on vibrational and electronic spectra , 1983 .

[41]  Michael L. Klein,et al.  Anion ordering in alkali cyanide crystals , 1986 .

[42]  T. R. Dyke,et al.  Group theoretical classification of the tunneling–rotational energy levels of water dimer , 1977 .

[43]  Elvira Guàrdia,et al.  Na+–Na+ and Cl−–Cl− ion pairs in water: Mean force potentials by constrained molecular dynamics , 1991 .

[44]  D. Lévesque,et al.  A molecular dynamics simulation of rotational and vibrational relaxation in liquid HCl , 1983 .

[45]  A. Laaksonen,et al.  A molecular dynamics simulation of HCl: A study of the vibrational dephasing mechanism , 1991 .

[46]  L. Ojamäe,et al.  The OH stretching frequency in liquid water simulations: the classical error , 1992 .

[47]  I. R. Mcdonald,et al.  Solvent-solute hydrogen bonding in dilute solutions of CN- and CH3CN in water and methanol , 1992 .

[48]  R. Hochstrasser,et al.  VIBRATIONAL RELAXATION OF HGI IN ETHANOL : EQUILIBRIUM MOLECULAR DYNAMICS SIMULATIONS , 1996 .

[49]  Giovanni Ciccotti,et al.  Molecular dynamics simulation of rigid molecules , 1986 .