An iterative process for nonlinear lipschitzian and strongly accretive mappings in uniformly convex and uniformly smooth Banach spaces

SupposeX is ans-uniformly smooth Banach space (s > 1). LetT: X → X be a Lipschitzian and strongly accretive map with constantk ɛ (0, 1) and Lipschitz constantL. DefineS: X → X bySx=f−Tx+x. For arbitraryx0ɛ X, the sequence {xn}n=1∞ is defined byxn+1=(1−αn)xn+αnSyn,yn=(1−Βn)xn+ΒnSxn,n⩾0, where {αn}n=0∞, {Βn}n=0∞ are two real sequences satisfying: (i) 0⩽αnp−1 ⩽ 2−1s(k+kΒn−L2Βn)(w+h)−1 for eachn, (ii) 0⩽Βnp−1 ⩽ min{k/L2, sk/(Ω+h)} for eachn, (iii) ⌆n αn=∞, wherew=b(1+L)s andb is the constant appearing in a characteristic inequality ofX, h=max{1, s(s-l)/2},p=min {2, s}. Then {xn}n=1∞ converges strongly to the unique solution ofTx=f. Moreover, ifp=2, αn=2−1s(k +kΒ−L2Β)(w+h)−1, andΒn=Β for eachn and some 0 ⩽Β ⩽ min {k/L2, sk/(w + h)}, then ∥xn + 1−q∥ ⩽ρn/s∥x1-q∥, whereq denotes the solution ofTx=f andρ=(1 − 4−1s2(k +kΒ − L2Β)2(w + h)−1ɛ (0, 1). A related result deals with the iterative approximation of Lipschitz strongly pseudocontractive maps inX. SupposeX ism-uniformly convex Banach spaces (m > 1) andc is the constant appearing in a characteristic inequality ofX, two similar results are showed in the cases of L satisfying (1 − c2)(1 + L)m < 1 + c − cm(l − k) or (1 − c2)Lm < 1 + c − cm(1 − s).

[1]  S. Reich Constructing zeros of accretive operators , 1979 .

[2]  Klaus Deimling,et al.  Zeros of accretive operators , 1974 .

[3]  Tosio Kato,et al.  Nonlinear semigroups and evolution equations , 1967 .

[4]  Simeon Reich,et al.  CONSTRUCTIVE TECHNIQUES FOR ACCRETIVE AND MONOTONE OPERATORS , 1979 .

[5]  Felix E. Browder,et al.  Nonlinear mappings of nonexpansive and accretive type in Banach spaces , 1967 .

[6]  W. Petryshyn Construction of fixed points of demicompact mappings in Hilbert space , 1966 .

[7]  C. E. Chidume,et al.  Iterative approximation of fixed points of Lipschitzian strictly pseudocontractive mappings , 1987 .

[8]  Zongben Xu,et al.  Characteristic inequalities of uniformly convex and uniformly smooth Banach spaces , 1991 .

[9]  C. Morales,et al.  Pseudo-contractive mappings and the Leray-Schauder boundary condition , 1979 .

[10]  Joram Lindenstrauss,et al.  Classical Banach spaces , 1973 .

[11]  Hong-Kun Xu Fixed point theorems for uniformly Lipschitzian semigroups in uniformly convex spaces , 1990 .

[12]  C. Chidume An iterative process for nonlinear Lipschitzian strongly accretive mappings in Lp spaces , 1990 .

[13]  F. Browder,et al.  Construction of fixed points of nonlinear mappings in Hilbert space , 1967 .

[14]  W. R. Mann,et al.  Mean value methods in iteration , 1953 .

[15]  L. Deng On Chidume′s Open Questions , 1993 .

[16]  M. Edelstein,et al.  Nonexpansive Mappings, Asymptotic Regularity and Successive Approximations , 1978 .

[17]  J. Dunn,et al.  Iterative construction of fixed points for multivalued operators of the monotone type , 1978 .

[18]  L. Deng Iteration Processes for Nonlinear Lipschitzian Strongly Accretive Mappings in Lp Spaces , 1994 .

[19]  Felix E. Browder,et al.  Nonlinear Operators and Nonlinear Equations of Evolution , 1976 .

[20]  B. Rhoades,et al.  Comments on two fixed point iteration methods , 1976 .

[21]  W. G. Dotson An iterative process for nonlinear monotonic nonexpansive operators in Hilbert space , 1978 .

[22]  F. Browder Nonlinear operators and nonlinear equations of evolution in Banach spaces , 1976 .

[23]  S. Reich,et al.  Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces , 1979 .

[24]  S. Ishikawa Fixed points by a new iteration method , 1974 .

[25]  J. Gwinner On the convergence of some iteration processes in uniformly convex Banach spaces , 1978 .

[26]  Ronald E. Bruck The iterative solution of the equation $y \in x + Tx$ for a monotone operator $T$ in Hilbert space , 1973 .

[27]  S. Reich Strong convergence theorems for resolvents of accretive operators in Banach spaces , 1980 .