Mie Plasmons: Modes Volumes, Quality Factors, and Coupling Strengths (Purcell Factor) to a Dipolar Emitter

Using either quasistatic approximation or exact Mie expansion, we characterize the localized surface plasmons supported by a metallic spherical nanoparticle. We estimate the quality factor and define the effective volume of the th mode in such a way that coupling strength with a neighbouring dipolar emitter is proportional to the ratio (Purcell factor). The role of Joule losses, far-field scattering, and mode confinement in the coupling mechanism is introduced and discussed with simple physical understanding, with particular attention paid to energy conservation.

[1]  Feldmann,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002, Physical review letters.

[2]  J. Khurgin,et al.  Enhancement of optical properties of nanoscaled objects by metal nanoparticles , 2009 .

[3]  B. Stout,et al.  Crucial role of the emitter-particle distance on the directivity of optical antennas. , 2011, Optics letters.

[4]  G. C. D. Francs,et al.  Photon antibunching in the optical near field , 2010 .

[5]  H. Metiu Surface enhanced spectroscopy , 1984 .

[6]  Jean-Jacques Greffet,et al.  Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle , 2006 .

[7]  R. Carminati,et al.  Magneto-optical control of Förster energy transfer , 2011 .

[8]  Nicolas Bonod,et al.  Ultracompact and unidirectional metallic antennas , 2010 .

[9]  Stefan A Maier,et al.  Plasmonic field enhancement and SERS in the effective mode volume picture. , 2006, Optics express.

[10]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[11]  Jean-Jacques Greffet,et al.  Impedance of a nanoantenna and a single quantum emitter. , 2010, Physical review letters.

[12]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[13]  Soon-Hong Kwon,et al.  Ultrasmall subwavelength nanorod plasmonic cavity. , 2011, Optics letters.

[14]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[15]  A. Dereux,et al.  Energy transfer in near-field optics. , 2005, The Journal of chemical physics.

[16]  A. Koenderink On the use of Purcell factors for plasmon antennas. , 2010, Optics letters.

[17]  S. Maier,et al.  Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. , 2011, Chemical reviews.

[18]  R. Bachelot,et al.  Quantitative analysis of localized surface plasmons based on molecular probing. , 2010, ACS nano.

[19]  Mark I. Stockman,et al.  The spaser as a nanoscale quantum generator and ultrafast amplifier , 2009, 0908.3559.

[20]  Pascal Royer,et al.  External control of the scattering properties of a single optical nanoantenna , 2010 .

[21]  Rosalba Saija,et al.  Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna. , 2010, ACS nano.

[22]  A. Bouhelier,et al.  Fluorescence relaxation in the near-field of a mesoscopic metallic particle: distance dependence and role of plasmon modes. , 2008, Optics express.

[23]  J. Khurgin,et al.  Theory of optical emission enhancement by coupled metal nanoparticles: An analytical approach , 2011 .

[24]  Ulrich Hohenester,et al.  Strong coupling between a metallic nanoparticle and a single molecule , 2008, 0802.1630.

[25]  O. Martin,et al.  Generalized bloch equations for optical interactions in confined geometries , 2005 .

[26]  V. Datsyuk Ultimate enhancement of the local density of electromagnetic states outside an absorbing sphere , 2007 .

[27]  G. Colas des Francs Molecule Non-Radiative Coupling to a Metallic Nanosphere: An Optical Theorem Treatment , 2009, International journal of molecular sciences.

[28]  James P. Gordon,et al.  Radiation Damping in Surface-Enhanced Raman Scattering , 1982 .

[29]  K. Vahala Optical microcavities , 2003, Nature.

[30]  Lukas Novotny,et al.  Optical Antennas , 2009 .

[31]  Oliver Benson,et al.  Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature. , 2009, Nano letters.

[32]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.