Mie Plasmons: Modes Volumes, Quality Factors, and Coupling Strengths (Purcell Factor) to a Dipolar Emitter
暂无分享,去创建一个
S. Derom | A. Dereux | A. Bouhelier | A. Bouhelier | A. Dereux | G. C. D. Francs | R. Vincent | G. Colas des Francs | S. Derom | R. Vincent
[1] Feldmann,et al. Drastic reduction of plasmon damping in gold nanorods. , 2002, Physical review letters.
[2] J. Khurgin,et al. Enhancement of optical properties of nanoscaled objects by metal nanoparticles , 2009 .
[3] B. Stout,et al. Crucial role of the emitter-particle distance on the directivity of optical antennas. , 2011, Optics letters.
[4] G. C. D. Francs,et al. Photon antibunching in the optical near field , 2010 .
[5] H. Metiu. Surface enhanced spectroscopy , 1984 .
[6] Jean-Jacques Greffet,et al. Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle , 2006 .
[7] R. Carminati,et al. Magneto-optical control of Förster energy transfer , 2011 .
[8] Nicolas Bonod,et al. Ultracompact and unidirectional metallic antennas , 2010 .
[9] Stefan A Maier,et al. Plasmonic field enhancement and SERS in the effective mode volume picture. , 2006, Optics express.
[10] V. Shalaev,et al. Demonstration of a spaser-based nanolaser , 2009, Nature.
[11] Jean-Jacques Greffet,et al. Impedance of a nanoantenna and a single quantum emitter. , 2010, Physical review letters.
[12] R. W. Christy,et al. Optical Constants of the Noble Metals , 1972 .
[13] Soon-Hong Kwon,et al. Ultrasmall subwavelength nanorod plasmonic cavity. , 2011, Optics letters.
[14] D. A. Dunnett. Classical Electrodynamics , 2020, Nature.
[15] A. Dereux,et al. Energy transfer in near-field optics. , 2005, The Journal of chemical physics.
[16] A. Koenderink. On the use of Purcell factors for plasmon antennas. , 2010, Optics letters.
[17] S. Maier,et al. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. , 2011, Chemical reviews.
[18] R. Bachelot,et al. Quantitative analysis of localized surface plasmons based on molecular probing. , 2010, ACS nano.
[19] Mark I. Stockman,et al. The spaser as a nanoscale quantum generator and ultrafast amplifier , 2009, 0908.3559.
[20] Pascal Royer,et al. External control of the scattering properties of a single optical nanoantenna , 2010 .
[21] Rosalba Saija,et al. Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna. , 2010, ACS nano.
[22] A. Bouhelier,et al. Fluorescence relaxation in the near-field of a mesoscopic metallic particle: distance dependence and role of plasmon modes. , 2008, Optics express.
[23] J. Khurgin,et al. Theory of optical emission enhancement by coupled metal nanoparticles: An analytical approach , 2011 .
[24] Ulrich Hohenester,et al. Strong coupling between a metallic nanoparticle and a single molecule , 2008, 0802.1630.
[25] O. Martin,et al. Generalized bloch equations for optical interactions in confined geometries , 2005 .
[26] V. Datsyuk. Ultimate enhancement of the local density of electromagnetic states outside an absorbing sphere , 2007 .
[27] G. Colas des Francs. Molecule Non-Radiative Coupling to a Metallic Nanosphere: An Optical Theorem Treatment , 2009, International journal of molecular sciences.
[28] James P. Gordon,et al. Radiation Damping in Surface-Enhanced Raman Scattering , 1982 .
[29] K. Vahala. Optical microcavities , 2003, Nature.
[30] Lukas Novotny,et al. Optical Antennas , 2009 .
[31] Oliver Benson,et al. Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature. , 2009, Nano letters.
[32] D. Bergman,et al. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.