ESPRESSO highlights the binary nature of the ultra-metal-poor giant HE 0107−5240
暂无分享,去创建一个
C. Prieto | R. Rebolo | V. Adibekyan | N. Santos | D. Ehrenreich | S. Udry | N. Nunes | P. Bonifacio | F. Pepe | A. Sozzetti | C. Lovis | G. Micela | E. Poretti | S. Cristiani | N. Santos | P. Figueira | G. Curto | P. Molaro | Y. Alibert | G. Cupani | V. D’Odorico | C. Martins | A. Mehner | S. Sousa | E. Caffau | J. G. González Hernández | G. Lo Curto | L. Monaco | I. Saviane | D. Aguado | M. Zapatero-Osorio | C. Allende Prieto | A. Mehner | P. Di Marcantonio | J. Hernández | R. Génova | A. Suárez-Mascareño | S. Udry | G. Micela | P. Marcantonio
[1] B. Schmidt,et al. The lowest detected stellar Fe abundance: the halo star SMSS J160540.18−144323.1 , 2019, Monthly Notices of the Royal Astronomical Society: Letters.
[2] C. Prieto,et al. Back to the Lithium Plateau with the [Fe/H] < −6 Star J0023+0307 , 2019, The Astrophysical Journal.
[3] N. Yoshida,et al. Formation of Carbon-enhanced Metal-poor Stars As a Consequence of Inhomogeneous Metal Mixing , 2018, The Astrophysical Journal.
[4] M. Shetrone,et al. Binarity among CEMP-no stars: an indication of multiple formation pathways? , 2018, Astronomy & Astrophysics.
[5] O. Pols,et al. Understanding the orbital periods of CEMP-s stars , 2018, Astronomy & Astrophysics.
[6] P. Jablonka,et al. The Pristine survey IV: approaching the Galactic metallicity floor with the discovery of an ultra-metal-poor star , 2018, Monthly Notices of the Royal Astronomical Society.
[7] P. J. Richards,et al. Gaia Data Release 2 , 2018, Astronomy & Astrophysics.
[8] T. A. Lister,et al. Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.
[9] C. Prieto,et al. J0023+0307: A Mega Metal-poor Dwarf Star from SDSS/BOSS , 2018, 1802.06240.
[10] R. Klessen,et al. TOPoS. IV. Chemical abundances from high-resolution observations of seven extremely metal-poor stars , 2018, 1801.03935.
[11] C. Prieto,et al. J0815+4729: A Chemically Primitive Dwarf Star in the Galactic Halo Observed with Gran Telescopio Canarias , 2017, 1712.06487.
[12] R. Klessen,et al. TOPoS - III. An ultra iron-poor multiple CEMP system , 2016, 1610.04106.
[13] A. Ji,et al. SD 1313–0019: ANOTHER SECOND-GENERATION STAR WITH [Fe/H] = −5.0, OBSERVED WITH THE MAGELLAN TELESCOPE , 2015, 1507.01973.
[14] C. Prieto,et al. An equatorial ultra iron-poor star identified in BOSS , 2015, 1505.05555.
[15] School of Physics,et al. TOPoS - II. On the bimodality of carbon abundance in CEMP stars Implications on the early chemical evolution of galaxies , 2015, 1504.05963.
[16] T. Puzia,et al. SEARCHING FOR DUST AROUND HYPER METAL POOR STARS , 2014, 1407.1449.
[17] T. Beers,et al. EXPLORING THE ORIGIN OF LITHIUM, CARBON, STRONTIUM, AND BARIUM WITH FOUR NEW ULTRA METAL-POOR STARS , 2014, 1405.5846.
[18] M. Shetrone,et al. Binarity in carbon-enhanced metal-poor stars , 2014, 1404.0385.
[19] Z. Magic,et al. A single low-energy, iron-poor supernova as the source of metals in the star SMSS J031300.36−670839.3 , 2014, Nature.
[20] R. Lallement,et al. TAPAS, a web-based service of atmospheric transmission computation for astronomy , 2013, 1311.4169.
[21] M. Mannetta,et al. ESPRESSO — An Echelle SPectrograph for Rocky Exoplanets Search and Stable Spectroscopic Observations , 2013 .
[22] V. Bromm,et al. Constraining the Statistics of Population III Binaries , 2012, 1211.1889.
[23] D. G. Bramall,et al. The SALT HRS spectrograph: instrument integration and laboratory test results , 2012, Other Conferences.
[24] A. Serenelli,et al. S-process in low-mass extremely metal-poor stars , 2012, 1308.2224.
[25] Cnrs,et al. An extremely primitive halo star , 2012, 1203.2612.
[26] Volker Springel,et al. SIMULATIONS ON A MOVING MESH: THE CLUSTERED FORMATION OF POPULATION III PROTOSTARS , 2011, 1101.5491.
[27] L. Girardi,et al. GALEX catalogs of UV sources: statistical properties and sample science applications: hot white dwarfs in the Milky Way , 2011 .
[28] Martin G. Cohen,et al. THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.
[29] F. Pepe,et al. Evaluating the stability of atmospheric lines with HARPS , 2010, 1003.0541.
[30] B. Skiff,et al. VizieR Online Data Catalog , 2009 .
[31] V. Hill,et al. First stars XII. Abundances in extremely metal-poor turnoff stars,and comparison with the giants , 2009, 0903.4174.
[32] P. Bonifacio,et al. UVES radial velocity accuracy from asteroid observations I. Implications for fine structure constant variability , 2007, 0712.3345.
[33] A. Szalay,et al. The Calibration and Data Products of GALEX , 2007 .
[34] T. Beers,et al. HE 0557–4840: Ultra-Metal-Poor and Carbon-Rich , 2007, 0707.2657.
[35] C. Tout,et al. Carbon-rich extremely metal poor stars: signatures of Population III asymptotic giant branch stars in binary systems , 2007, astro-ph/0703685.
[36] S. O. Kepler,et al. White dwarf mass distribution in the SDSS , 2006, astro-ph/0612277.
[37] David A. H. Buckley,et al. Completion and commissioning of the Southern African Large Telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.
[38] T. Beers,et al. THE DISCOVERY AND ANALYSIS OF VERY METAL-POOR STARS IN THE GALAXY , 2005 .
[39] T. Beers,et al. Nucleosynthetic signatures of the first stars , 2005, Nature.
[40] T. Beers,et al. The Binary Frequency Among Carbon-enhanced, s-Process-rich, Metal-poor Stars , 2004, astro-ph/0412422.
[41] A. Szalay,et al. The On-Orbit Performance of the Galaxy Evolution Explorer , 2004, astro-ph/0411310.
[42] M. Machida,et al. Is HE 0107–5240 A Primordial Star? The Characteristics of Extremely Metal-Poor Carbon-Rich Stars , 2004, astro-ph/0402589.
[43] M. Bessell,et al. On the Oxygen Abundance of HE 0107–5240 , 2004, astro-ph/0401450.
[44] T. Beers,et al. HE 0107–5240, a Chemically Ancient Star. I. A Detailed Abundance Analysis , 2003, astro-ph/0311173.
[45] T. Beers,et al. First stars V - Abundance patterns from C to Zn and supernova yields in the early Galaxy , 2003, astro-ph/0311082.
[46] A. Loeb,et al. The formation of the first low-mass stars from gas with low carbon and oxygen abundances , 2003, Nature.
[47] P. Bonifacio,et al. On the Origin of HE 0107–5240, the Most Iron-deficient Star Presently Known , 2003, astro-ph/0307527.
[48] R. Salvaterra,et al. Low-mass relics of early star formation , 2003, Nature.
[49] P. Bonifacio,et al. Astrophysics: How did the metals in a giant star originate? , 2003, Nature.
[50] K. Nomoto,et al. First-generation black-hole-forming supernovae and the metal abundance pattern of a very iron-poor star , 2003, Nature.
[51] J. B. Laird,et al. Spectroscopic Binaries, Velocity Jitter, and Rotation in Field Metal-poor Red Giant and Red Horizontal-Branch Stars , 2003 .
[52] T. Beers,et al. A stellar relic from the early Milky Way , 2002, Nature.
[53] P. Kroupa. The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems , 2002, Science.
[54] P. Kroupa. On the variation of the initial mass function , 2000, astro-ph/0009005.
[55] Bernard Delabre,et al. Design, construction, and performance of UVES, the echelle spectrograph for the UT2 Kueyen Telescope at the ESO Paranal Observatory , 2000, Astronomical Telescopes and Instrumentation.
[56] T. Beers,et al. Extremely Metal-poor Stars. IV. The Carbon-rich Objects , 1997 .
[57] T. Beers,et al. Extremely Metal-Poor Stars. The Carbon-Rich, Neutron Capture Element-Poor Object CS 22957–027 , 1997 .
[58] R. Mcclure. THE BINARY NATURE OF THE SUBGIANT CH STARS , 1997, astro-ph/9702034.
[59] T. Beers,et al. Extremely Metal-Poor Stars. II. Elemental Abundances and the Early Chemical Enrichment of The Galaxy , 1996 .
[60] A. Vanture. The CH Stars. III. Heavy Element Abundances , 1992 .
[61] A. Vanture. The CH stars. II - Carbon, nitrogen, and oxygen abundances. III - Heavy element abundances , 1992 .
[62] M. Bessell,et al. The ultra-metal-deficient (population III) red giant CD -38 245 ? , 1984 .
[63] J. Tonry,et al. A survey of galaxy redshifts. I. Data reduction techniques. , 1979 .