Numerical investigation of moving gel wall formation in a Y-shaped microchannel

[1]  A. Miri,et al.  3D Bioprinted Hydrogel Microfluidic Devices for Parallel Drug Screening. , 2022, ACS applied bio materials.

[2]  Philipp J. Mehner,et al.  Fundamentals of Hydrogel‐Based Valves and Chemofluidic Transistors for Lab‐on‐a‐Chip Technology: A Tutorial Review , 2022, Advanced Materials Technologies.

[3]  Shuang Song,et al.  Fabrication of magnetic core/shell hydrogels via microfluidics for controlled drug delivery , 2021, Chemical Engineering Science.

[4]  R. Villa,et al.  Engineering Tissue Barrier Models on Hydrogel Microfluidic Platforms. , 2021, ACS applied materials & interfaces.

[5]  Xiaolong Luo,et al.  Flow-assembled chitosan membranes in microfluidics: recent advances and applications. , 2021, Journal of materials chemistry. B.

[6]  I. Badea,et al.  Novel Microfluidic Approaches to Circulating Tumor Cell Separation and Sorting of Blood Cells: A Review , 2021 .

[7]  Z. Qian,et al.  Current research progress of photopolymerized hydrogels in tissue engineering , 2021, Chinese Chemical Letters.

[8]  Shivangi Sachdeva,et al.  Microfluidic Point-of-Care Testing: Commercial Landscape and Future Directions , 2021, Frontiers in Bioengineering and Biotechnology.

[9]  N. Huang,et al.  Mild formation of core–shell hydrogel microcapsules for cell encapsulation , 2020, Biofabrication.

[10]  C. Stefanini,et al.  An overview of extrusion-based bioprinting with a focus on induced shear stress and its effect on cell viability , 2020 .

[11]  Ying Cai,et al.  Recent advances in microfluidic technology and applications for anti-cancer drug screening , 2020, TrAC Trends in Analytical Chemistry.

[12]  Adrian Neild,et al.  The emerging role of microfluidics in multi-material 3D bioprinting. , 2020, Lab on a chip.

[13]  Z. Mahdavi,et al.  Core–shell nanoparticles used in drug delivery-microfluidics: a review , 2020, RSC advances.

[14]  R. Reis,et al.  Could 3D models of cancer enhance drug screening? , 2019, Biomaterials.

[15]  Antony R. Warden,et al.  Recent advances in microfluidics for drug screening. , 2019, Biomicrofluidics.

[16]  J. Guan,et al.  Thermosensitive, fast gelling, photoluminescent, highly flexible, and degradable hydrogels for stem cell delivery. , 2019, Acta biomaterialia.

[17]  D. Paolino,et al.  Mucosal Applications of Poloxamer 407-Based Hydrogels: An Overview , 2018, Pharmaceutics.

[18]  Ronald Fedkiw,et al.  A review of level-set methods and some recent applications , 2018, J. Comput. Phys..

[19]  C. Bilger,et al.  Evaluation of two-phase flow solvers using Level Set and Volume of Fluid methods , 2017, J. Comput. Phys..

[20]  Y. S. Zhang,et al.  Microfluidic Bioprinting for Engineering Vascularized Tissues and Organoids. , 2017, Journal of visualized experiments : JoVE.

[21]  A. Fakhari,et al.  Thermogelling properties of purified poloxamer 407 , 2017, Heliyon.

[22]  Dongmei Li,et al.  Cytocompatible cell encapsulation via hydrogel photopolymerization in microfluidic emulsion droplets. , 2017, Biomicrofluidics.

[23]  Frédéric Gibou,et al.  A Voronoi Interface approach to cell aggregate electropermeabilization , 2017, J. Comput. Phys..

[24]  Richard M Maceiczyk,et al.  Small but Perfectly Formed? Successes, Challenges, and Opportunities for Microfluidics in the Chemical and Biological Sciences , 2017 .

[25]  Ziyi He,et al.  Recent advances in microfluidic 3D cellular scaffolds for drug assays , 2017 .

[26]  J. Burdick,et al.  A practical guide to hydrogels for cell culture , 2016, Nature Methods.

[27]  Angelo S. Mao,et al.  Microfluidic Generation of Monodisperse, Structurally Homogeneous Alginate Microgels for Cell Encapsulation and 3D Cell Culture , 2015, Advanced healthcare materials.

[28]  Frédéric Gibou,et al.  A Sharp Computational Method for the Simulation of the Solidification of Binary Alloys , 2015, J. Sci. Comput..

[29]  Boris Stoeber,et al.  Flow manipulation and cell immobilization for biochemical applications using thermally responsive fluids. , 2012, Biomicrofluidics.

[30]  J. M. Rees,et al.  Simulations of microfluidic droplet formation using the two-phase level set method , 2011 .

[31]  Jin-Ming Lin,et al.  Controlled photopolymerization of hydrogel microstructures inside microchannels for bioassays. , 2009, Lab on a chip.

[32]  B. Stoeber,et al.  Moving temporary wall in microfluidic devices. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Jean Claude Chaumeil,et al.  A Review of Poloxamer 407 Pharmaceutical and Pharmacological Characteristics , 2006, Pharmaceutical Research.

[34]  Robert L Sah,et al.  Photo-and Electropatterning of Hydrogel-encapsulated Living Cell Arrays , 2004 .

[35]  Gunilla Kreiss,et al.  A conservative level set method for two phase flow II , 2005, J. Comput. Phys..

[36]  Robert Johann,et al.  Gentle cell trapping and release on a microfluidic chip by in situ alginate hydrogel formation. , 2005, Lab on a chip.

[37]  James J. Feng,et al.  A diffuse-interface method for simulating two-phase flows of complex fluids , 2004, Journal of Fluid Mechanics.

[38]  T. Desai,et al.  Microfluidic Patterning of Cellular Biopolymer Matrices for Biomimetic 3-D Structures , 2003 .

[39]  D. Kallick,et al.  Distribution and Diffusion of Sodium Taurocholate and Egg Phosphatidylcholine Aggregates in Rat Intestinal Mucin , 2001, Pharmaceutical Research.

[40]  B. Chu,et al.  Formation of homogeneous gel-like phases by mixed triblock copolymer micelles in aqueous solution: FCC to BCC phase transition , 2000 .

[41]  P. Colella,et al.  An Adaptive Level Set Approach for Incompressible Two-Phase Flows , 1997 .

[42]  P. Stilbs,et al.  Effect of inorganic salts on the micellar behaviour of ethylene oxide-propylene oxide block copolymers in aqueous solution , 1993 .

[43]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[44]  Coulson and Richardson's Chemical Engineering , 2019 .

[45]  B. Stoeber,et al.  On the rheology of Pluronic F127 aqueous solutions , 2017 .

[46]  S. Mallapragada,et al.  The effect of salts on the micellization temperature of aqueous poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) solutions and the dissolution rate and water diffusion coefficient in their corresponding gels. , 2002, Journal of pharmaceutical sciences.

[47]  G. Fleischer Micellization in aqueous solution of a poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) triblock copolymer investigated with pulsed field gradient NMR , 1993 .

[48]  C. Booth,et al.  Micellisation and gelation of triblock copoly(oxyethylene/oxypropylene/oxyethylene), F127 , 1992 .

[49]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[50]  O. Wichterle,et al.  Hydrophilic Gels for Biological Use , 1960, Nature.