Characterization and Modeling of 28-nm Bulk CMOS Technology Down to 4.2 K

This paper presents an experimental investigation, compact modeling, and low-temperature physics-based modeling of a commercial 28-nm bulk CMOS technology operating at cryogenic temperatures. The physical and technological parameters are extracted at 300, 77, and 4.2 K from dc measurements made on various geometries. The simplified-EKV compact model is used to accurately capture the dc characteristics of this technology down to 4.2 K and to demonstrate the impact of cryogenic temperatures on the essential analog figures-of-merit. A new body-partitioning methodology is then introduced to obtain a set of analytical expressions for the electrostatic profile and the freeze-out layer thickness in field-effect transistors operating from deep-depletion to inversion. The proposed physics-based model relies on the drift-diffusion transport mechanism to obtain the drain current and subthreshold swing, and is validated with the experimental results. This model explains the degradation in subthreshold swing at deep-cryogenic temperatures by the temperature-dependent occupation of interface charge traps. This leads to a degradation of the theoretical limit of the subthreshold swing at deep-cryogenic temperatures.

[1]  Christian Enz,et al.  Nanoscale MOSFET Modeling: Part 2: Using the Inversion Coefficient as the Primary Design Parameter , 2017, IEEE Solid-State Circuits Magazine.

[2]  Y. P. Varshni Temperature dependence of the energy gap in semiconductors , 1967 .

[3]  R. Jaeger,et al.  Simulation of impurity freezeout through numerical solution of Poisson's equation with application to MOS device behavior , 1980, IEEE Transactions on Electron Devices.

[4]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[5]  Christian Enz,et al.  Nanoscale MOSFET Modeling: Part 1: The Simplified EKV Model for the Design of Low-Power Analog Circuits , 2017, IEEE Solid-State Circuits Magazine.

[6]  J. H. Sim,et al.  An analytical delayed-turn-off model for buried-channel PMOS devices operating at 77 K , 1992 .

[7]  J. C. Bardin,et al.  Cryogenic small-signal and noise performance of 32nm SOI CMOS , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[8]  Thomas Koprucki,et al.  Numerical simulation of carrier transport in semiconductor devices at cryogenic temperatures , 2016 .

[9]  M. Peckerar,et al.  Effects of cryogenic temperatures on small-signal MOSFET capacitances , 2007, 2007 International Semiconductor Device Research Symposium.

[10]  T. Lehmann,et al.  Characterization of SOS-CMOS FETs at Low Temperatures for the Design of Integrated Circuits for Quantum Bit Control and Readout , 2010, IEEE Transactions on Electron Devices.

[11]  Francis Balestra,et al.  Influence of substrate freeze-out on the characteristics of MOS transistors at very low temperatures , 1987 .

[12]  Edoardo Charbon,et al.  Nanometer CMOS characterization and compact modeling at deep-cryogenic temperatures , 2017, 2017 47th European Solid-State Device Research Conference (ESSDERC).

[13]  G. Ghibaudo,et al.  Physics and performance of nanoscale semiconductor devices at cryogenic temperatures , 2017 .

[14]  M. Turowski,et al.  Device-circuit models for extreme environment space electronics , 2012, Proceedings of the 19th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2012.

[15]  Franklin G. Curtis,et al.  Simulation of Silicon Nanodevices at Cryogenic Temperatures for Quantum Computing , 2017 .

[16]  G. Ghibaudo,et al.  Low temperature characterization of 14nm FDSOI CMOS devices , 2014, 2014 11th International Workshop on Low Temperature Electronics (WOLTE).

[17]  Andrea Baschirotto,et al.  Cryogenic characterization of 28 nm bulk CMOS technology for quantum computing , 2017, 2017 47th European Solid-State Device Research Conference (ESSDERC).

[18]  M. de Souza,et al.  Cryogenic Operation of Junctionless Nanowire Transistors , 2011, IEEE Electron Device Letters.

[19]  Christian Enz,et al.  Charge-Based MOS Transistor Modeling: The EKV Model for Low-Power and RF IC Design , 2006 .

[20]  Denis Flandre,et al.  ased Methodology for the Design of CMOS Analog Circuits and Its Application to the Synthesis of a Silicon-on-Insulator , 1996 .

[21]  Gerard Ghibaudo,et al.  New method for the extraction of MOSFET parameters , 1988 .

[22]  R. Ishihara,et al.  Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent , 2017, npj Quantum Information.

[23]  H. Lu,et al.  Cryogenic Control Architecture for Large-Scale Quantum Computing , 2014, 1409.2202.

[24]  J. Sallese,et al.  Modeling Nanowire and Double-Gate Junctionless Field-Effect Transistors , 2018 .

[25]  S. K. Tewksbury,et al.  Attojoule MOSFET logic devices using low voltage swings and low temperature , 1985 .

[26]  S. Selberherr MOS device modeling at 77 K , 1989 .

[27]  Yoon-Ha Jeong,et al.  Low-Temperature Performance of Nanoscale MOSFET for Deep-Space RF Applications , 2008, IEEE Electron Device Letters.

[28]  A. Vladimirescu,et al.  Cryo-CMOS for quantum computing , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[29]  G. Ghibaudo,et al.  Device and circuit cryogenic operation for low-temperature electronics [Book Review] , 2002, IEEE Circuits and Devices Magazine.

[30]  J. Sallese,et al.  Charge-Based Modeling of Double-Gate and Nanowire Junctionless FETs Including Interface-Trapped Charges , 2016, IEEE Transactions on Electron Devices.

[31]  R Maurand,et al.  A CMOS silicon spin qubit , 2016, Nature Communications.

[32]  Chun-Min Zhang,et al.  Charge-Based Modeling of Radiation Damage in Symmetric Double-Gate MOSFETs , 2018, IEEE Journal of the Electron Devices Society.

[33]  Gerard Ghibaudo,et al.  Assessment of interface state density in silicon metal‐oxide‐semiconductor transistors at room, liquid‐nitrogen, and liquid‐helium temperatures , 1990 .

[34]  B. Dierickx,et al.  Freeze-out effects on NMOS transistor characteristics at 4.2 K , 1989 .

[35]  N. Collaert,et al.  Assessment of DC and low-frequency noise performances of triple-gate FinFETs at cryogenic temperatures , 2016 .

[36]  Paul Jespers The gm/ID Methodology, a sizing tool for low-voltage analog CMOS Circuits: The semi-empirical and compact model approaches , 2009 .

[37]  David Reilly,et al.  Engineering the quantum-classical interface of solid-state qubits , 2015, npj Quantum Information.

[38]  Arnout Beckers,et al.  Design-oriented modeling of 28 nm FDSOI CMOS technology down to 4.2 K for quantum computing , 2018, 2018 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS).

[39]  Xiang Fu,et al.  The engineering challenges in quantum computing , 2017, Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017.

[40]  K. Wilson,et al.  A simple analytical model for the electrical characteristics of depletion-mode MOSFET's with application to low-temperature operation , 1986, IEEE Transactions on Electron Devices.

[41]  D.M. Binkley,et al.  Tradeoffs and Optimization in Analog CMOS Design , 2008, 2007 14th International Conference on Mixed Design of Integrated Circuits and Systems.

[42]  Daniel P. Foty,et al.  Impurity ionization in MOSFETs at very low temperatures , 1990 .

[43]  R. L. Anderson,et al.  MOSFET's in the 0°K approximation: Static characteristics of MOSFET's in the 0°K approximation☆ , 1974 .