Further Results on the Inverse Base of Axially Monogenic Polynomials

[1]  L. Aloui,et al.  Basic Sets of Special Monogenic Polynomials in Fréchet Modules , 2017 .

[2]  L. Aloui,et al.  Bernoulli and Euler Polynomials in Clifford Analysis , 2015 .

[3]  D. Constales,et al.  Hadamard three-hyperballs type theorem and overconvergence of special monogenic simple series , 2014 .

[4]  L. Aloui,et al.  Bernoulli special monogenic polynomials with the difference and sum polynomial bases , 2014 .

[5]  G. Hassan A note on the growth order of the inverse and product bases of special monogenic polynomials , 2012 .

[6]  M. I. Falcão,et al.  Laguerre derivative and monogenic Laguerre polynomials: An operational approach , 2011, Math. Comput. Model..

[7]  L. Aloui,et al.  On the order of the difference and sum bases of polynomials in Clifford setting , 2010 .

[8]  M. Abul-Ez,et al.  On polynomial series expansions of Cliffordian functions , 2010 .

[9]  L. Aloui,et al.  Hypercomplex derivative bases of polynomials in Clifford analysis , 2010 .

[10]  S. Arabia,et al.  Similar Transposed Bases of Polynomials in Clifford Analysis , 2010 .

[11]  N. D. Schepper,et al.  The Generalized Clifford-Gegenbauer Polynomials Revisited , 2009 .

[12]  N. Gürlebeck On Appell Sets and the Fueter-Sce Mapping , 2009 .

[13]  M. I. Falcão,et al.  Generalized Exponentials through Appell sets in Rn+1 and Bessel functions , 2007 .

[14]  M. I. Falcão,et al.  Special Monogenic Polynomials—Properties and Applications , 2007 .

[15]  D. Constales,et al.  On the convergence properties of basic series representing special monogenic functions , 2003 .

[16]  M. Abul-Ez Hadamard product of bases of polynomials in clifford analysis , 2000 .

[17]  M. Abul-Ez Bessel Polynomial Expansions in Spaces of Holomorphic Functions , 1998 .

[18]  F. Sommen,et al.  Axial Monogenic Functions from Holomorphic Functions , 1993 .

[19]  J. Cnops,et al.  Basis transforms in nuclear FrVechet spaces , 1993 .

[20]  M. Abul-Ez Inverse sets of polynomials in Clifford analysis , 1992 .

[21]  D. Constales,et al.  Basic sets of pofynomials in clifford analysis , 1990 .

[22]  Franciscus Sommen,et al.  Special functions in Clifford analysis and axial symmetry , 1988 .

[23]  P. Lounesto,et al.  Axially symmetric vector fields and their complex potentials , 1983 .

[24]  M. Mikhail SIMPLE BASIC SETS OF POLYNOMIALS. , 1954 .

[25]  M. Mikhail Basic sets of polynomials and their reciprocal, product and quotient sets , 1953 .

[26]  W. Newns On the representation of analytic functions by infinite series , 1953, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[27]  M. Nassif On the Effectiveness at the Origin of Product and Inverse Sets of Polynomials , 1951 .

[28]  M. T. Eweida On the Effectiveness at a Point of Product and Reciprocal Sets of Polynomials , 1949 .

[29]  B. Cannon On Convergence Properties of Basic Series , 1939 .

[30]  B. Cannon On the Convergence of Series of Polynomials , 1938 .