An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis

A reservoir of Atg9-containing vesicles and tubules provides the initial membranes necessary for autophagophore formation in yeast.

[1]  R. Schekman,et al.  Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway , 1980, Cell.

[2]  S. Emr,et al.  Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. , 1988, Molecular and cellular biology.

[3]  M. Basson,et al.  Increased amounts of HMG-CoA reductase induce "karmellae": a proliferation of stacked membrane pairs surrounding the yeast nucleus , 1988, The Journal of cell biology.

[4]  J. Crapo,et al.  Quantitative aspects of immunogold labeling in embedded and in nonembedded sections. , 1989, The American journal of anatomy.

[5]  R. Schekman,et al.  Functional compartments of the yeast Golgi apparatus are defined by the sec7 mutation. , 1989, The EMBO journal.

[6]  R. Sikorski,et al.  A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. , 1989, Genetics.

[7]  R. Schekman,et al.  Assembly of yeast Sec proteins involved in translocation into the endoplasmic reticulum into a membrane-bound multisubunit complex , 1991, Nature.

[8]  D. Klionsky,et al.  Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway , 1992, The Journal of cell biology.

[9]  R. Schekman,et al.  SEC12 encodes a guanine-nucleotide-exchange factor essential for transport vesicle budding from the ER , 1993, Nature.

[10]  S. Emr,et al.  A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast , 1995, The Journal of cell biology.

[11]  D. Klionsky,et al.  Two Distinct Pathways for Targeting Proteins from the Cytoplasm to the Vacuole/Lysosome , 1997, The Journal of cell biology.

[12]  P. Philippsen,et al.  Additional modules for versatile and economical PCR‐based gene deletion and modification in Saccharomyces cerevisiae , 1998, Yeast.

[13]  S. Emr,et al.  Fab1p PtdIns(3)P 5-Kinase Function Essential for Protein Sorting in the Multivesicular Body , 1998, Cell.

[14]  H. Pelham,et al.  Two syntaxin homologues in the TGN/endosomal system of yeast , 1998, The EMBO journal.

[15]  T. Lang,et al.  Autophagy and the cvt Pathway Both Depend onAUT9 , 2000, Journal of bacteriology.

[16]  C. L. Jackson,et al.  Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors. , 2000, Trends in cell biology.

[17]  D. Klionsky,et al.  Apg9p/Cvt7p Is an Integral Membrane Protein Required for Transport Vesicle Formation in the Cvt and Autophagy Pathways , 2000, The Journal of cell biology.

[18]  A Kihara,et al.  Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. , 2001, Molecular biology of the cell.

[19]  Fulvio Reggiori,et al.  Sorting of proteins into multivesicular bodies: ubiquitin‐dependent and ‐independent targeting , 2001, The EMBO journal.

[20]  K Suzuki,et al.  The pre‐autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation , 2001, The EMBO journal.

[21]  D. Klionsky,et al.  Convergence of Multiple Autophagy and Cytoplasm to Vacuole Targeting Components to a Perivacuolar Membrane Compartment Prior tode Novo Vesicle Formation* , 2002, The Journal of Biological Chemistry.

[22]  D. Klionsky,et al.  Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. , 2002, Developmental cell.

[23]  S. Emr,et al.  Bro1 is an endosome-associated protein that functions in the MVB pathway in Saccharomyces cerevisiae , 2003, Journal of Cell Science.

[24]  E. Eskelinen,et al.  Intravacuolar Membrane Lysis in Saccharomyces cerevisiae , 2003, The Journal of Biological Chemistry.

[25]  J. Nunnari,et al.  Evidence for a two membrane–spanning autonomous mitochondrial DNA replisome , 2003, The Journal of cell biology.

[26]  Daniel J Klionsky,et al.  Early stages of the secretory pathway, but not endosomes, are required for Cvt vesicle and autophagosome assembly in Saccharomyces cerevisiae. , 2004, Molecular biology of the cell.

[27]  D. Klionsky,et al.  Cargo Proteins Facilitate the Formation of Transport Vesicles in the Cytoplasm to Vacuole Targeting Pathway* , 2004, Journal of Biological Chemistry.

[28]  Linyi Chen,et al.  Soi3p/Rav1p functions at the early endosome to regulate endocytic trafficking to the vacuole and localization of trans-Golgi network transmembrane proteins. , 2004, Molecular biology of the cell.

[29]  D. Klionsky,et al.  The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. , 2004, Developmental cell.

[30]  D. Klionsky,et al.  Atg9 Cycles Between Mitochondria and the Pre-Autophagosomal Structure in Yeasts , 2005, Autophagy.

[31]  D. Klionsky,et al.  Autophagosomes: biogenesis from scratch? , 2005, Current opinion in cell biology.

[32]  A. Spang,et al.  New modules for the repeated internal and N‐terminal epitope tagging of genes in Saccharomyces cerevisiae , 2005, Yeast.

[33]  B. Glick,et al.  Golgi maturation visualized in living yeast , 2006, Nature.

[34]  J. Lippincott-Schwartz,et al.  Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes , 2006, Journal of Cell Science.

[35]  Y. Ohsumi,et al.  Assortment of phosphatidylinositol 3-kinase complexes--Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae. , 2006, Molecular biology of the cell.

[36]  D. Klionsky,et al.  Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast , 2006, The Journal of cell biology.

[37]  D. Klionsky,et al.  Atg9 sorting from mitochondria is impaired in early secretion and VFT-complex mutants in Saccharomyces cerevisiae , 2006, Journal of Cell Science.

[38]  D. Klionsky,et al.  Autophagosome formation: core machinery and adaptations , 2007, Nature Cell Biology.

[39]  V. Deretic,et al.  Unveiling the roles of autophagy in innate and adaptive immunity , 2007, Nature Reviews Immunology.

[40]  Y. Ohsumi,et al.  Atg8, a Ubiquitin-like Protein Required for Autophagosome Formation, Mediates Membrane Tethering and Hemifusion , 2007, Cell.

[41]  D. Klionsky,et al.  Atg27 is required for autophagy-dependent cycling of Atg9. , 2006, Molecular biology of the cell.

[42]  D. Klionsky,et al.  Atg 27 Is Required for Autophagy-dependent Cycling of Atg 9 , 2007 .

[43]  Y. Ohsumi,et al.  Hierarchy of Atg proteins in pre‐autophagosomal structure organization , 2007, Genes to cells : devoted to molecular & cellular mechanisms.

[44]  Daniel J. Klionsky,et al.  Autophagy fights disease through cellular self-digestion , 2008, Nature.

[45]  S. Tooze,et al.  Kinase-Inactivated ULK Proteins Inhibit Autophagy via Their Conserved C-Terminal Domains Using an Atg13-Independent Mechanism , 2008, Molecular and Cellular Biology.

[46]  Guido Kroemer,et al.  Autophagy in the Pathogenesis of Disease , 2008, Cell.

[47]  N. Mizushima,et al.  Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. , 2008, Molecular biology of the cell.

[48]  T. Fujimura,et al.  The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. , 2008, Molecular biology of the cell.

[49]  M. Mari,et al.  A Cryosectioning Procedure for the Ultrastructural Analysis and the Immunogold Labelling of Yeast Saccharomyces cerevisiae , 2008, Traffic.

[50]  D. Klionsky,et al.  Self-interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy. , 2008, Molecular biology of the cell.

[51]  Daniel J. Klionsky,et al.  Quantitative analysis of autophagy-related protein stoichiometry by fluorescence microscopy , 2008, The Journal of Cell Biology.

[52]  D. Klionsky,et al.  Quantitative analysis of autophagy-related protein stoichiometry by fluorescence microscopy , 2008, The Journal of cell biology.

[53]  T. Noda,et al.  A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation , 2009, Nature Cell Biology.

[54]  D. Klionsky,et al.  Post-Golgi Sec Proteins Are Required for Autophagy in Saccharomyces cerevisiae , 2010, Molecular biology of the cell.

[55]  Peter K. Kim,et al.  Mitochondria Supply Membranes for Autophagosome Biogenesis during Starvation , 2010, Cell.

[56]  A. van der Vaart,et al.  Exit from the Golgi Is Required for the Expansion of the Autophagosomal Phagophore in Yeast Saccharomyces cerevisiae , 2010, Molecular biology of the cell.