Nanomaterial‐Based Plasmon‐Enhanced Infrared Spectroscopy

Surface‐enhanced infrared absorption (SEIRA) has attracted increasing attention due to the potential of infrared spectroscopy in applications such as molecular trace sensing of solids, polymers, and proteins, specifically fueled by recent substantial developments in infrared plasmonic materials and engineered nanostructures. Here, the significant progress achieved in the past decades is reviewed, along with the current state of the art of SEIRA. In particular, the plasmonic properties of a variety of nanomaterials are discussed (e.g., metals, semiconductors, and graphene) along with their use in the design of efficient SEIRA configurations. To conclude, perspectives on potential applications, including single‐molecule detection and in vivo bioassays, are presented.

[1]  Zhipei Sun,et al.  Probing optical anisotropy of nanometer-thin van der waals microcrystals by near-field imaging , 2017, Nature Communications.

[2]  Hai Hu,et al.  Higher order Fano graphene metamaterials for nanoscale optical sensing. , 2017, Nanoscale.

[3]  Fengnian Xia,et al.  Infrared Nanophotonics Based on Graphene Plasmonics , 2017 .

[4]  Zhipei Sun,et al.  Carbon Nanotubes as an Ultrafast Emitter with a Narrow Energy Spread at Optical Frequency , 2017, Advanced materials.

[5]  P. Avouris,et al.  Strong and Broadly Tunable Plasmon Resonances in Thick Films of Aligned Carbon Nanotubes. , 2017, Nano letters.

[6]  Hai Hu,et al.  Large-Scale Suspended Graphene Used as a Transparent Substrate for Infrared Spectroscopy. , 2017, Small.

[7]  D. Zahn,et al.  Nanoantenna-assisted plasmonic enhancement of IR absorption of vibrational modes of organic molecules , 2017, Beilstein journal of nanotechnology.

[8]  Amos Martinez,et al.  Photon‐Pair Generation with a 100 nm Thick Carbon Nanotube Film , 2017, Advanced materials.

[9]  Alexandre Dazzi,et al.  AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging. , 2017, Chemical reviews.

[10]  Harald Giessen,et al.  Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas. , 2017, Chemical reviews.

[11]  A. Marcelli,et al.  Terahertz and mid-infrared plasmons in three-dimensional nanoporous graphene , 2017, Nature Communications.

[12]  Ashutosh Kumar Singh,et al.  Resonant Coupling between Molecular Vibrations and Localized Surface Plasmon Resonance of Faceted Metal Oxide Nanocrystals. , 2017, Nano letters.

[13]  Kai Chen,et al.  Tunable Nanoantennas for Surface Enhanced Infrared Absorption Spectroscopy by Colloidal Lithography and Post-Fabrication Etching , 2017, Scientific Reports.

[14]  M. Melli,et al.  Functionalization of Scanning Probe Tips with Epitaxial Semiconductor Layers , 2017 .

[15]  Giovanni Dietler,et al.  Nanoplasmonic mid-infrared biosensor for in vitro protein secondary structure detection , 2017, Light: Science & Applications.

[16]  J. Tersoff,et al.  Coherent Plasmon and Phonon-Plasmon Resonances in Carbon Nanotubes. , 2017, Physical review letters.

[17]  Hua Yu,et al.  Study of graphene plasmons in graphene-MoS2 heterostructures for optoelectronic integrated devices. , 2017, Nanoscale.

[18]  Tingting Wu,et al.  Tunable resonant graphene plasmons for mid-infrared biosensing , 2016, 2017 Conference on Lasers and Electro-Optics (CLEO).

[19]  F. Guinea,et al.  Polaritons in layered two-dimensional materials. , 2016, Nature materials.

[20]  Francesco De Angelis,et al.  Electromagnetic field confinement in the gap of germanium nanoantennas with plasma wavelength of 4.5 micrometers , 2016, OPTO.

[21]  J. Cox,et al.  Nonlinear plasmonic sensing with nanographene , 2016, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[22]  Artur R. Davoyan,et al.  Gate-Variable Mid-Infrared Optical Transitions in a (Bi1-xSbx)2Te3 Topological Insulator. , 2016, Nano letters.

[23]  Richard A. Soref,et al.  Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics , 2016 .

[24]  G. Wiederrecht,et al.  Ultraconfined Plasmonic Hotspots Inside Graphene Nanobubbles. , 2016, Nano letters.

[25]  M. Toimil-Molares,et al.  Porous Gold Nanowires: Plasmonic Response and Surface‐Enhanced Infrared Absorption , 2016 .

[26]  P. Nordlander,et al.  Molecular Plasmon-Phonon Coupling. , 2016, Nano letters.

[27]  Douglas J. Paul,et al.  Tunability of the dielectric function of heavily doped germanium thin films for mid-infrared plasmonics , 2016 .

[28]  T. Taliercio,et al.  All-semiconductor plasmonic gratings for biosensing applications in the mid-infrared spectral range. , 2016, Optics express.

[29]  Xiaoxia Yang,et al.  Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons , 2016, Nature Communications.

[30]  S. Haigh,et al.  Molecular transport through capillaries made with atomic-scale precision , 2016, Nature.

[31]  Jérôme Faist,et al.  Graphene–Metamaterial Photodetectors for Integrated Infrared Sensing , 2016 .

[32]  Hans A. Bechtel,et al.  Direct observation of narrow mid-infrared plasmon linewidths of single metal oxide nanocrystals , 2016, Nature Communications.

[33]  Phaedon Avouris,et al.  Ultrasensitive Plasmonic Detection of Molecules with Graphene , 2016 .

[34]  Zhipei Sun,et al.  Far‐Field Spectroscopy and Near‐Field Optical Imaging of Coupled Plasmon–Phonon Polaritons in 2D van der Waals Heterostructures , 2016, Advanced materials.

[35]  James Hone,et al.  Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene , 2016, Nature Photonics.

[36]  Alfred Leitenstorfer,et al.  Optical Activation of Germanium Plasmonic Antennas in the Mid-Infrared. , 2016, Physical review letters.

[37]  K. Loh,et al.  Large-Area Graphene Nanodot Array for Plasmon-Enhanced Infrared Spectroscopy. , 2016, Small.

[38]  P. Biagioni,et al.  Fabrication of mid-infrared plasmonic antennas based on heavily doped germanium thin films , 2016 .

[39]  Zin-Min Tun,et al.  Surface-Enhanced Infrared Spectroscopy and Neutron Reflectivity Studies of Ubiquinone in Hybrid Bilayer Membranes under Potential Control. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[40]  B. Mizaikoff,et al.  Mid-infrared spectroscopy for protein analysis: potential and challenges , 2016, Analytical and Bioanalytical Chemistry.

[41]  P. Schäfer,et al.  Surface plasmon polaritons with plasma frequencies above 1 eV in Sn‐doped In2 O3 , 2016 .

[42]  Amos Martinez,et al.  Optical modulators with 2D layered materials , 2016, Nature Photonics.

[43]  Hatice Altug,et al.  Infrared Plasmonic Biosensor for Real-Time and Label-Free Monitoring of Lipid Membranes. , 2016, Nano letters.

[44]  H. Matsui,et al.  Mid‐infrared Plasmonic Resonances in 2D VO2 Nanosquare Arrays , 2015 .

[45]  Zhenjun Li,et al.  Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage. , 2015, Nanoscale.

[46]  J. Aizpurua,et al.  Importance of Plasmonic Scattering for an Optimal Enhancement of Vibrational Absorption in SEIRA with Linear Metallic Antennas , 2015 .

[47]  H. Petek,et al.  Dynamically coupled plasmon-phonon modes in GaP: An indirect-gap polar semiconductor , 2015 .

[48]  Jong-Hyun Ahn,et al.  Ultra-high modulation depth exceeding 2,400% in optically controlled topological surface plasmons , 2015, Nature Communications.

[49]  Eugenio Calandrini,et al.  Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates. , 2015, Nano letters.

[50]  R. Adato,et al.  Engineering mid-infrared nanoantennas for surface enhanced infrared absorption spectroscopy , 2015 .

[51]  Peter Nordlander,et al.  Pronounced Linewidth Narrowing of an Aluminum Nanoparticle Plasmon Resonance by Interaction with an Aluminum Metallic Film. , 2015, Nano letters.

[52]  F. J. García de abajo,et al.  Plasmon–Phonon Interactions in Topological Insulator Microrings , 2015 .

[53]  Eric Pop,et al.  Graphene-Based Platform for Infrared Near-Field Nanospectroscopy of Water and Biological Materials in an Aqueous Environment. , 2015, ACS nano.

[54]  M. Wuttig,et al.  A Switchable Mid‐Infrared Plasmonic Perfect Absorber with Multispectral Thermal Imaging Capability , 2015, Advanced materials.

[55]  H. Bechtel,et al.  Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes , 2015, Nature Photonics.

[56]  Andrea Centrone,et al.  Infrared Imaging and Spectroscopy Beyond the Diffraction Limit. , 2015, Annual review of analytical chemistry.

[57]  Andrea Marini,et al.  Molecular Sensing with Tunable Graphene Plasmons , 2015, 1805.02120.

[58]  Valerio Pruneri,et al.  Mid-infrared plasmonic biosensing with graphene , 2015, Science.

[59]  O. Selig,et al.  Ultrasensitive Ultrafast Vibrational Spectroscopy Employing the Near Field of Gold Nanoantennas. , 2015, Physical review letters.

[60]  Brian F. Donovan,et al.  Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics. , 2015, Nature materials.

[61]  F. García-Vidal,et al.  Ultraefficient Coupling of a Quantum Emitter to the Tunable Guided Plasmons of a Carbon Nanotube. , 2015, Physical review letters.

[62]  M. Goldflam,et al.  Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. , 2015, Nature nanotechnology.

[63]  G. Vignale,et al.  Highly confined low-loss plasmons in graphene-boron nitride heterostructures. , 2014, Nature materials.

[64]  Daniel Wasserman,et al.  Review of mid-infrared plasmonic materials , 2015 .

[65]  Eugenio Calandrini,et al.  Group-IV midinfrared plasmonics , 2015 .

[66]  K. Hata,et al.  Length-dependent plasmon resonance in single-walled carbon nanotubes. , 2014, ACS nano.

[67]  Thomas Taubner,et al.  Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses , 2014 .

[68]  Rohit Bhargava,et al.  Flat mid-infrared composite plasmonic materials using lateral doping-patterned semiconductors , 2014 .

[69]  T. Taubner,et al.  Graphene-enhanced infrared near-field microscopy. , 2014, Nano letters.

[70]  G. Navickaite,et al.  Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns , 2014, Science.

[71]  Werner Schrenk,et al.  Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures , 2014, Nature Communications.

[72]  H. Atwater,et al.  Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures. , 2014, Nano letters.

[73]  Harald Giessen,et al.  Spatial extent of plasmonic enhancement of vibrational signals in the infrared. , 2014, ACS nano.

[74]  X. Xie,et al.  Surface plasmon polaritons in topological insulators , 2014, 1404.4706.

[75]  F. Henneberger,et al.  ZnO as a tunable metal: new types of surface plasmon polaritons. , 2014, Physical review letters.

[76]  Steven M. Anlage,et al.  Progress in superconducting metamaterials , 2014, 1403.6514.

[77]  Wenjuan Zhu,et al.  Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers. , 2014, Nano letters.

[78]  F. D. Abajo,et al.  Graphene Plasmonics: Challenges and Opportunities , 2014, 1402.1969.

[79]  P. Avouris,et al.  Graphene plasmonics for terahertz to mid-infrared applications. , 2014, ACS nano.

[80]  Wei Du,et al.  Surface plasmon resonance based silicon carbide optical waveguide sensor , 2014 .

[81]  Martina Abb,et al.  Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays. , 2014, Nano letters.

[82]  N. Zheludev,et al.  Ultraviolet and visible range plasmonics of a topological insulator , 2014 .

[83]  J. Zi,et al.  Plasmon-phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography. , 2013, Nano letters.

[84]  F. Guinea,et al.  Novel midinfrared plasmonic properties of bilayer graphene. , 2013, Physical review letters.

[85]  F. Guinea,et al.  Tunable phonon-induced transparency in bilayer graphene nanoribbons. , 2013, Nano letters.

[86]  Mato Knez,et al.  Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy , 2013, Nature Communications.

[87]  A. E. Cetin,et al.  Plasmonically Enhanced Vibrational Biospectroscopy Using Low‐Cost Infrared Antenna Arrays by Nanostencil Lithography , 2013 .

[88]  M. Knupfer,et al.  π and π + σ plasmon localization in single-walled carbon nanotube meta-materials , 2013, Nanotechnology.

[89]  Yongqian Li,et al.  Surface-enhanced molecular spectroscopy (SEMS) based on perfect-absorber metamaterials in the mid-infrared , 2013, Scientific Reports.

[90]  J. Heberle,et al.  Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins. , 2013, Biochimica et biophysica acta.

[91]  E. Cubukcu,et al.  Tunable omnidirectional strong light-matter interactions mediated by graphene surface plasmons , 2013 .

[92]  G. Shvets,et al.  Plasmonic scaling of superconducting metamaterials , 2013, 1309.3706.

[93]  Daniel Wasserman,et al.  All-semiconductor plasmonic nanoantennas for infrared sensing. , 2013, Nano letters.

[94]  Pao Tai Lin,et al.  Si-CMOS compatible materials and devices for mid-IR microphotonics , 2013 .

[95]  Nader Engheta,et al.  Near-infrared metatronic nanocircuits by design. , 2013, Physical review letters.

[96]  Harald Giessen,et al.  Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures , 2013, Nature Communications.

[97]  Ronen Adato,et al.  In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas , 2013, Nature Communications.

[98]  P. Calvani,et al.  Observation of Dirac plasmons in a topological insulator. , 2013, Nature nanotechnology.

[99]  Thomas Taubner,et al.  Using low-loss phase-change materials for mid-infrared antenna resonance tuning. , 2013, Nano letters.

[100]  V. Shalaev,et al.  Alternative Plasmonic Materials: Beyond Gold and Silver , 2013, Advanced materials.

[101]  G. Vignale,et al.  Intrinsic lifetime of Dirac plasmons in graphene , 2013, 1305.4666.

[102]  Shyamsunder Erramilli,et al.  Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems. , 2013, Nano letters.

[103]  Min Seok Jang,et al.  Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. , 2013, Nano letters.

[104]  A. Pucci,et al.  Plasmonic Enhancement of Vibrational Excitations in the Infrared , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[105]  F. Guinea,et al.  Damping pathways of mid-infrared plasmons in graphene nanostructures , 2013, Nature Photonics.

[106]  Sukosin Thongrattanasiri,et al.  Optical field enhancement by strong plasmon interaction in graphene nanostructures. , 2013, Physical review letters.

[107]  Cristiano D'Andrea,et al.  Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy. , 2013, ACS nano.

[108]  Peter Nordlander,et al.  Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties. , 2013, Journal of the American Chemical Society.

[109]  Sergei Lopatin,et al.  Resonant antenna probes for tip-enhanced infrared near-field microscopy. , 2013, Nano letters.

[110]  Federico Capasso,et al.  Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material. , 2013, Optics letters.

[111]  J. Aizpurua,et al.  Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas. , 2013, Physical review letters.

[112]  K. Kolwas,et al.  Damping rates of surface plasmons for particles of size from nano- to micrometers; reduction of the nonradiative decay , 2012, 1211.4781.

[113]  T. Taubner,et al.  Antenna-enhanced infrared near-field nanospectroscopy of a polymer , 2012 .

[114]  N. Zheludev,et al.  Low-loss terahertz superconducting plasmonics , 2012 .

[115]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[116]  Michael A. Filler,et al.  Tunable mid-infrared localized surface plasmon resonances in silicon nanowires. , 2012, Journal of the American Chemical Society.

[117]  R. Adato,et al.  Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy. , 2012, ACS nano.

[118]  D. Pavlidis,et al.  Gallium-nitride-based plasmonic multilayer operating at 1.55 μm. , 2012, Optics letters.

[119]  F. Keilmann,et al.  Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. , 2012, Nano letters.

[120]  Ross Stanley,et al.  Plasmonics in the mid-infrared , 2012, Nature Photonics.

[121]  D. Wasserman,et al.  Mid-infrared designer metals , 2012, IEEE Photonics Conference 2012.

[122]  Y. Ikemoto,et al.  Broadband near-field mid-infrared spectroscopy and application to phonon resonances in quartz. , 2012, Optics express.

[123]  Choon How Gan,et al.  Synthesis of highly confined surface plasmon modes with doped graphene sheets in the mid-infrared and terahertz frequencies , 2012, 1203.4308.

[124]  M. Kafesaki,et al.  A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics , 2012, Nature Photonics.

[125]  C. N. Lau,et al.  Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.

[126]  S. Thongrattanasiri,et al.  Optical nano-imaging of gate-tunable graphene plasmons , 2012, Nature.

[127]  N. Zheludev,et al.  From metamaterials to metadevices. , 2012, Nature materials.

[128]  Harald Giessen,et al.  Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates. , 2012, ACS nano.

[129]  F. Golmar,et al.  Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots , 2012, Nature Communications.

[130]  P. Biagioni,et al.  Nanoantennas for visible and infrared radiation , 2011, Reports on progress in physics. Physical Society.

[131]  Gennady Shvets,et al.  Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. , 2012, Nature materials.

[132]  Richard A. Soref,et al.  Infrared surface plasmons on heavily doped silicon , 2011 .

[133]  J. Ketterson,et al.  Infrared plasmonics with indium-tin-oxide nanorod arrays. , 2011, ACS nano.

[134]  Koray Aydin,et al.  Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing. , 2011, ACS nano.

[135]  C. N. Lau,et al.  Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface. , 2011, Nano letters (Print).

[136]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[137]  Robert L. Jarecki,et al.  Infrared plasmons on heavily-doped silicon , 2011 .

[138]  A. Boltasseva,et al.  Oxides and nitrides as alternative plasmonic materials in the optical range , 2011, 1108.0993.

[139]  C. Ning,et al.  All-semiconductor active plasmonic system in mid-infrared wavelengths. , 2011, Optics express.

[140]  Viktor A. Podolskiy,et al.  Transparent conductive oxides: Plasmonic materials for telecom wavelengths , 2011 .

[141]  J. Lermé,et al.  Size Evolution of the Surface Plasmon Resonance Damping in Silver Nanoparticles: Confinement and Dielectric Effects , 2011 .

[142]  S. Maier,et al.  Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach. , 2011, Nano letters.

[143]  Z. Zhou,et al.  Hydrogen-bonding networks and RNA bases revealed by cryo electron microscopy suggest a triggering mechanism for calcium switches , 2011, Proceedings of the National Academy of Sciences.

[144]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[145]  L. Molenkamp,et al.  Surface state charge dynamics of a high-mobility three-dimensional topological insulator. , 2011, Physical review letters.

[146]  M. Schnell,et al.  Infrared-spectroscopic nanoimaging with a thermal source. , 2011, Nature materials.

[147]  F. Koppens,et al.  Graphene plasmonics: a platform for strong light-matter interactions. , 2011, Nano letters.

[148]  Harry A. Atwater,et al.  Low-Loss Plasmonic Metamaterials , 2011, Science.

[149]  D. Prim,et al.  Coupling of a microfluidic mixer to a Fourier-transform infrared spectrometer for protein-conformation studies. , 2011, Chimia.

[150]  Lukas Novotny,et al.  Strong coupling, energy splitting, and level crossings: A classical perspective , 2010 .

[151]  Ranjan Singh,et al.  Tuning the resonance in high-temperature superconducting terahertz metamaterials. , 2010, Physical review letters.

[152]  E. H. Hwang,et al.  Plasmon-phonon coupling in graphene , 2010, 1008.0862.

[153]  Annemarie Pucci,et al.  Surface enhanced infrared spectroscopy using gold nanoantennas , 2010 .

[154]  Vivek B Shenoy,et al.  Structural evolution during the reduction of chemically derived graphene oxide. , 2010, Nature chemistry.

[155]  Alp Artar,et al.  High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy. , 2010, Nano letters.

[156]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[157]  Steven M. Anlage,et al.  The physics and applications of superconducting metamaterials , 2010, 1004.3226.

[158]  N. Zheludev,et al.  Superconducting plasmonics and extraordinary transmission , 2010, 1004.0729.

[159]  Richard A. Soref,et al.  IR permittivities for silicides and doped silicon , 2010 .

[160]  Gennady Shvets,et al.  Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays. , 2010, Optics express.

[161]  David L. Kaplan,et al.  Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays , 2009, Proceedings of the National Academy of Sciences.

[162]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[163]  T. Ando,et al.  Optical Response of Finite-Length Carbon Nanotubes , 2009, 0909.1908.

[164]  Xiang Zhang,et al.  Split ring resonator sensors for infrared detection of single molecular monolayers. Appl. Phys. Lett. 95, 043113 , 2009 .

[165]  Javier Aizpurua,et al.  Controlling the near-field oscillations of loaded plasmonic nanoantennas , 2009 .

[166]  Amanda Deering,et al.  Melamine detection in infant formula powder using near- and mid-infrared spectroscopy. , 2009, Journal of agricultural and food chemistry.

[167]  Yu-Bin Chen,et al.  Development of mid-infrared surface plasmon resonance-based sensors with highly-doped silicon for biomedical and chemical applications. , 2009, Optics express.

[168]  S Das Sarma,et al.  Collective modes of the massless dirac plasma. , 2009, Physical review letters.

[169]  Michael J. Ford,et al.  Search for the Ideal Plasmonic Nanoshell: The Effects of Surface Scattering and Alternatives to Gold and Silver , 2009 .

[170]  Annemarie Pucci,et al.  Resonances of individual lithographic gold nanowires in the infrared , 2008 .

[171]  Annemarie Pucci,et al.  Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. , 2008, Physical review letters.

[172]  A. Greentree,et al.  Diamond integrated quantum photonics , 2008 .

[173]  Xu Du,et al.  Approaching ballistic transport in suspended graphene. , 2008, Nature nanotechnology.

[174]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[175]  Mark D. Losego,et al.  Dependence of plasmon polaritons on the thickness of indium tin oxide thin films , 2008 .

[176]  P. Kim,et al.  Dirac charge dynamics in graphene by infrared spectroscopy , 2008, 0807.3780.

[177]  Javier Aizpurua,et al.  Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. , 2008, ACS nano.

[178]  Naomi J. Halas,et al.  Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates , 2008 .

[179]  S. Xiao,et al.  Intrinsic and extrinsic performance limits of graphene devices on SiO2. , 2007, Nature nanotechnology.

[180]  Naomi J Halas,et al.  Plasmonic nanoshell arrays combine surface-enhanced vibrational spectroscopies on a single substrate. , 2007, Angewandte Chemie.

[181]  Leonid Alekseyev,et al.  Supplementary Information for “ Negative refraction in semiconductor metamaterials ” , 2007 .

[182]  Katherine E. Cilwa,et al.  Metal Films with Arrays of Tiny Holes: Spectroscopy with Infrared Plasmonic Scaffolding , 2007 .

[183]  F. G. D. Abajo Colloquium: Light scattering by particle and hole arrays , 2007, 0903.1671.

[184]  P. Avouris,et al.  Carbon-based electronics. , 2007, Nature nanotechnology.

[185]  Lukas Novotny,et al.  Effective wavelength scaling for optical antennas. , 2007, Physical review letters.

[186]  J. Heberle,et al.  Biochemical applications of surface-enhanced infrared absorption spectroscopy , 2007, Analytical and bioanalytical chemistry.

[187]  S. Sarma,et al.  Dielectric function, screening, and plasmons in two-dimensional graphene , 2006, cond-mat/0610561.

[188]  Annemarie Pucci,et al.  Resonances of individual metal nanowires in the infrared , 2006 .

[189]  M. Osawa In‐situ Surface‐Enhanced Infrared Spectroscopy of the Electrode/Solution Interface , 2006 .

[190]  Thomas Taubner,et al.  Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution. , 2006, Nano letters.

[191]  Annemarie Pucci,et al.  Surface enhanced infrared absorption of octadecanethiol on wet-chemically prepared Au nanoparticle films , 2006 .

[192]  Klaus Gerwert,et al.  Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy , 2006, Nature.

[193]  B. Dabrowski,et al.  Negative refraction in ferromagnet-superconductor superlattices. , 2005, Physical review letters.

[194]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[195]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[196]  Riichiro Saito,et al.  Raman spectroscopy of carbon nanotubes , 2005 .

[197]  F. Keilmann,et al.  Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy , 2004 .

[198]  C. Domingo,et al.  Surface-Enhanced Infrared Spectroscopy , 2004, Applied spectroscopy.

[199]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[200]  B. Stuart Infrared Spectroscopy , 2004, Analytical Techniques in Forensic Science.

[201]  F. Keilmann,et al.  Near-field microscopy by elastic light scattering from a tip , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[202]  Gordon S. Kino,et al.  Optical antennas: Resonators for local field enhancement , 2003 .

[203]  A. Pucci,et al.  The correlation between film thickness and adsorbate line shape in surface enhanced infrared absorption , 2003 .

[204]  Adam D. McFarland,et al.  Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity , 2003 .

[205]  Bernhard Lendl,et al.  Time-resolved Fourier transform infrared spectrometry using a microfabricated continuous flow mixer: application to protein conformation study using the example of ubiquitin. , 2003, Lab on a chip.

[206]  S. Ye,et al.  Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry , 2002 .

[207]  S. Franzen,et al.  Indium Tin Oxide Plasma Frequency Dependence on Sheet Resistance and Surface Adlayers Determined by Reflectance FTIR Spectroscopy , 2002 .

[208]  F. Keilmann,et al.  Phonon-enhanced light–matter interaction at the nanometre scale , 2002, Nature.

[209]  Feldmann,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002, Physical review letters.

[210]  P. Nussenzveig,et al.  Classical analog of electromagnetically induced transparency , 2001, quant-ph/0107061.

[211]  W. Vacca,et al.  The Mauna Kea Observatories Near‐Infrared Filter Set. II. Specifications for a New JHKL′ M′ Filter Set for Infrared Astronomy , 2001, astro-ph/0110593.

[212]  N. Darnton,et al.  Lifetimes of intermediates in the β-sheet to α-helix transition of β-lactoglobulin by using a diffusional IR mixer , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[213]  W. K. Liu,et al.  Infrared studies of hole-plasmon excitations in heavily-doped p-type MBE-grown GaAs : C , 2000 .

[214]  V. A. Maroni,et al.  Surface-Enhanced Infrared Spectroscopy: A Comparison of Metal Island Films with Discrete and Nondiscrete Surface Plasmons , 2000 .

[215]  A. V. Gusakov,et al.  Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation , 1999 .

[216]  Joseph M. Kahn,et al.  Imaging diversity receivers for high-speed infrared wireless communication , 1998, IEEE Commun. Mag..

[217]  J. Klein-Wiele,et al.  Size-Dependent Plasmon Lifetimes and Electron-Phonon Coupling Time Constants for Surface Bound Na Clusters , 1998 .

[218]  C. Lieber,et al.  Atomic structure and electronic properties of single-walled carbon nanotubes , 1998, Nature.

[219]  M. Osawa,et al.  In situ and Real-Time Surface-Enhanced Infrared Study of Electrochemical Reactions , 1997 .

[220]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[221]  Tetsu Kachi,et al.  Raman scattering from LO phonon‐plasmon coupled modes in gallium nitride , 1994 .

[222]  Yuji Nishikawa,et al.  Surface-Enhanced Infrared Spectroscopy: The Origin of the Absorption Enhancement and Band Selection Rule in the Infrared Spectra of Molecules Adsorbed on Fine Metal Particles , 1993 .

[223]  Masatoshi Osawa,et al.  Electromagnetic mechanism of enhanced infrared absorption of molecules adsorbed on metal island films , 1992 .

[224]  Masatoshi Osawa,et al.  Surface-enhanced infrared absorption of p-nitrobenzoic acid deposited on silver island films: contributions of electromagnetic and chemical mechanisms , 1991 .

[225]  G. Schatz,et al.  An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium , 1987 .

[226]  W. Suëtaka,et al.  In-situ infrared measurement of thiocyanate at a silver/electrolyte interface by the excitation of surface plasmon polaritons , 1986 .

[227]  R. J. Bell,et al.  Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. , 1985, Applied optics.

[228]  M. Levenson The principles of nonlinear optics , 1985, IEEE Journal of Quantum Electronics.

[229]  H. Lutz,et al.  Far-infrared reflection spectra, TO- and LO-phonon frequencies, coupled and decoupled plasmon-phonon modes, dielectric constants, and effective dynamical charges of manganese, iron, and platinum group pyrite type compounds , 1985 .

[230]  P. J. Dobson,et al.  Silicon doping of MBE-grown GaAs films , 1983 .

[231]  N. Natsuaki,et al.  Change of the electron effective mass in extremely heavily doped n-type Si obtained by ion implantation and laser annealing , 1981 .

[232]  A. Hartstein,et al.  Enhancement of the Infrared Absorption from Molecular Monolayers with Thin Metal Overlayers , 1980 .

[233]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[234]  T. A. Ford,et al.  INFRARED SPECTRUM AND STRUCTURE OF LIQUID WATER , 1966 .

[235]  A. Mooradian,et al.  Observation of the Interaction of Plasmons with Longitudinal Optical Phonons in GaAs , 1966 .

[236]  U. Fano Effects of Configuration Interaction on Intensities and Phase Shifts , 1961 .

[237]  M. Cardona Electron Effective Masses of InAs and GaAs as a Function of Temperature and Doping , 1961 .

[238]  L. Rayleigh III. Note on the remarkable case of diffraction spectra described by Prof. Wood , 1907 .